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Executive summary 
The joint scheduling of energy and balancing capacity is an important step towards a future-

proof electricity market design dominated by the large-scale integration of renewable energy 

sources, where ancillary services are to gain increasing importance. The current paradigm in 

Europe is a separation of the procurement of balancing capacity in day-ahead balancing 

markets from the trading of energy in the day-ahead energy market. This introduces 

inefficiencies, since energy and balancing capacity are interdependent due to fixed costs of 

starting up and operating generators, both energy and balancing capacity compete for finite 

generation capacity, and finite network capacity needs to be allocated for accommodating 

both energy trades as well as real-time balancing energy.  

In this study we develop a two-stage model of the status quo of European day-ahead market 

clearing followed by balancing market operation which is compared to a co-optimisation 

benchmark. We further compare both setups to a regime of so-called market-based cross-

zonal allocation of international network capacity, which adheres to Article 41 of the 

European Commission Electricity Balancing Guideline (European Commission, 2017).  

We estimate that co-optimisation can deliver 678 million € per year of savings in operational 

costs relative to the status quo of sequential clearing of balancing capacity followed by 

energy. The market-based allocation of Article 41 of EBGL achieves 84 million € per year 

relative to the status quo. Extrapolating these figures to EU level based on energy 

production/consumption indicates a potential cost saving of 1281 million € per year from 

co-optimisation relative to the status quo and a potential cost saving of 159 million € per 

year from market-based relative to the status quo. 

The drivers for these efficiency gains relate to the misrepresentation of fixed costs in 

sequential designs, which result in an inefficient commitment of resources with relatively 

low fixed costs. Due to their technical minima, these resources take up space from inflexible 

lower-cost resources that could have been used instead, in real time for serving forecast 

demand as well as imbalances. Co-optimisation avoids this pitfall by taking into account the 

fact that fixed costs are incurred once at the day-ahead stage for the provision of both energy 

and balancing capacity. It also allows a mix of commitments to be selected in real time that is 

not constrained by the rigidity of technical minima. This enables the system to rely as much 

as possible on low marginal cost resources.  

The sequential clearing models rely heavily on intraday corrections. If such intraday 

corrections fail to materialise, we estimate an increase in the efficiency gains of co-

optimisation, relative to status quo, of 1218 million € per year for the Core region, with the 

market-based allocation of Article 41 of EBGL capturing 239 million € per year of savings 

relative to the status quo for the same region.  
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Sequential designs rely on bidding opportunity costs for balancing capacity, and this can 

introduce errors in day-ahead scheduling in case of price forecast errors. This is especially 

so if one accounts for the appreciable price volatility that occurred in 2021 and 2022. 

Nevertheless, our modelling estimates that intraday corrections can largely absorb the 

adverse effect of these price forecast errors, to the extent that sequential designs with price 

forecast errors attain an average cost that is within the 95% confidence interval of the 

average cost of sequential designs without price forecast errors. 

Bidding opportunity costs is not necessary in co-optimised multi-product energy and 

balancing capacity auctions (in the same way that bidding for the opportunity cost of cross-

zonal capacity explicitly is not necessary in co-optimised multi-product energy and 

transmission auctions, e.g. SDAC). Doing so results in an explicit representation of 

opportunity costs of balancing capacity on top of its implicit consideration in the model, and 

thus scheduling inefficiencies. Our modelling estimates these inefficiencies at approximately 

100 million € per year in the Core region, relative to the pure co-optimisation design. 
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1. Introduction 

1.1 Context 

Energy systems are rapidly evolving, and the deep integration of renewable resources such 

as wind and solar power are a dominant feature of this evolution. Due to their inherent 

unpredictability in supply, our limited ability to control these renewable resources, and their 

significant variability, the secure integration of these resources implies that ancillary 

services, and in particular balancing capacity (referred to equivalently as reserve throughout 

this report), are becoming an increasingly valuable service in electricity markets. This is 

happening while renewable resources are simultaneously exerting a downward pressure on 

energy prices due to their near-zero marginal cost. Electricity market design thus faces a call 

for evolution in order to be future-proof, in the sense of being able to reflect this substantial 

shift in the electricity market value chain. 

Energy and balancing capacity are inherently interdependent. They are both provided by a 

common limited resource, namely power generation capacity. They both require a common 

fixed cost for their provision, namely a unit should be started up and running to be able to 

provide energy or balancing capacity, or both. And they both occupy limited capacity on the 

high-voltage network for their delivery. Ignoring this interdependency introduces economic 

inefficiencies, as well as misalignments in pricing. 

Despite this interdependency, the status quo in European market operations clears balancing 

capacity separately from energy. Balancing capacity is typically cleared first before the day-

ahead energy market and is followed by the day-ahead clearing of energy. Offers in the day-

ahead energy market are commonly portfolio-based in most of the European Member States. 

Following the clearing of the day-ahead balancing capacity and energy markets, asset owners 

are required to nominate individual units that can deliver on the traded energy and balancing 

capacity. Resources that are cleared for balancing capacity effectively commit to submit offers 

into the balancing energy market, i.e. the real-time energy market, that are greater than or 

equal to the amount of balancing capacity that has been contracted in the day-ahead 

balancing capacity market. 

The paradigm described above contrasts to a joint clearing of energy and balancing capacity, 

which is the norm in several international markets, including the US. We will refer to this 

paradigm of jointly clearing energy and balancing capacity in the day-ahead market as co-

optimisation. The separation that takes place in Europe can be traced back to a number of 

institutional origins, related to governance, separation of system operation and market 

operation, a preference for portfolio bidding, and a number of other factors. Despite this 

established norm, European legislation carves out a path for using co-optimisation in Article 

40 of the European Balancing Guideline (EBGL) (European Commission, 2017). The focus of 
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Article 40 is on allocating cross-zonal capacity in the day-ahead market for the exchange of 

balancing capacity, between Member States, also allowing to facilitate the exchange of 

balancing energy in real time. The cross-zonal trade of balancing energy is one of the most 

active frontiers in European market design over the past years. It follows the cross-zonal 

coupling of day-ahead markets, and the initiative is attested by the PICASSO, MARI and 

TERRE pan-European platforms which have been put in place for trading balancing energy 

from automatic frequency restoration reserves, manual frequency restoration reserves, and 

replacement reserves (aFRR, mFRR and RR) respectively. The allocation of cross-zonal 

capacity in day-ahead markets to facilitate this international trade of balancing energy is a 

consequence of article 40 of EBGL. 

As an alternative to article 40, the EBGL also allows for an alternative approach, which is 

referred to as the so-called market-based approach for cross-zonal allocation of transmission 

capacity, described in article 41 of the EBGL. The idea in the market-based approach is to 

maintain the current paradigm of sequential clearing of day-ahead balancing capacity 

markets followed by day-ahead energy markets. A crucial difference between the market-

based approach and the current paradigm is that day-ahead balancing capacity markets are 

intended to exchange balancing capacity or share reserves between bidding zones. For this 

to be possible, cross-zonal capacity needs to be allocated for that exchange at the day-ahead 

market stage. The market-based approach allocates this cross-zonal capacity by solving a 

balancing capacity market model which allows for cross-zonal exchange of balancing 

capacity but does not explicitly account for energy. Since the opportunity cost of procuring 

balancing capacity which could have been allocated to the energy market is a necessary input 

for this process, the market-based approach foresees alternative methods for estimating the 

incremental cost of withdrawing cross-zonal capacity from the day-ahead energy market1, 

e.g. the energy price spread documented from previous energy market sessions. This cost of 

allocating cross-zonal capacity to the balancing capacity market is then used as input in the 

balancing capacity market model2. Once the day-ahead balancing capacity market is cleared, 

the amount of transmission capacity that is used for trading balancing capacity between 

zones is removed from the day-ahead market model, which is run in the final step of the 

market-based approach. The process is depicted graphically in Figure 1. 

 
1 ENTSO-E, Explanatory document to the Energinet, Fingrid, Statnett and Svenska kraftna t proposal for the 
establishment of common and harmonised rules and processes for the exchange and procurement of balancing 
capacity and for the application of a market-based allocation process in accordance with Article 33(1) and 
Article 38(1) of the Commission Regulation (EU) 2017/2195 of 23 November 2017 establishing a guideline on 
electricity balancing, December 2019 
2 https://consultations.entsoe.eu/markets/nordic-tsos-proposals-for-the-methodology-for-a-
ma/supporting_documents/Explanatory%20document%20to%20article%2038.pdf  

https://consultations.entsoe.eu/markets/nordic-tsos-proposals-for-the-methodology-for-a-ma/supporting_documents/Explanatory%20document%20to%20article%2038.pdf
https://consultations.entsoe.eu/markets/nordic-tsos-proposals-for-the-methodology-for-a-ma/supporting_documents/Explanatory%20document%20to%20article%2038.pdf
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Figure 1: A graphical depiction of the market-based approach for cross-zonal capacity allocation for the trading of balancing 
capacity between European Member States according to Article 41 of the EBGL. 

 

Co-optimisation, as described in Article 40 of EBGL, is perceived as a complex and 

burdensome policy measure by many market participants. On the other hand, it is viewed as 

a welfare-enhancing solution by policy makers. The market-based approach of Article 41 is 

seen as a middle ground which aims at achieving some of the intended benefits of co-

optimising without affecting the existing governance structure and design of the European 

markets as deeply as the co-optimisation alternative. In this work we contribute to the policy 

discourse by attempting to quantify the potential welfare gains of a move towards co-

optimisation a  la Article 40 relative to the status quo of separate balancing capacity and 

energy markets without cross-zonal exchanges of balancing capacity, and by estimating what 

fraction of these benefits can be reaped by the market-based approach of Article 41. 

 

1.2 Related literature 

The topic of co-optimisation relates to broader issues of market design, including the degree 

of centralisation in electricity markets and unit versus portfolio-based operations (Wilson, 

2002), (Ahlqvist, Holmberg, & Tangera s, 2018). It is not our intention to cover these topics in 

detail here. Instead, we briefly describe the idea of co-optimisation which is juxtaposed to 

sequential clearing throughout the report. The idea of co-optimisation is to effectively 

conduct a multi-product auction that simultaneously clears energy and balancing capacity. 

The intention is to optimise both the allocation of these interdependent products, but also to 

price them consistently, since an agent that can offer both is looking at the profit margins 

generated by the different markets when deciding how to allocate its generation capacity. 

The principle of multi-product auctioning of energy and balancing capacity is no different 

than that of the multi-product auctioning of energy and transmission capacity: there too we 

have a joint allocation (of energy and network access), and the two are priced jointly, thereby 

giving rise to prices that differ between bidding zones. For reasons of legacy and institutional 

constraints, whereas European day-ahead markets co-optimise energy and transmission, 

they do not include balancing capacity in the existing day-ahead multi-product auction. 
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The value of co-optimising energy and balancing capacity was identified early on in US 

market design. Notably, the Midcontinent ISO received the prestigious Franz Edelman award 

in 2011 for demonstrating how a shift to branch and bound optimisation technology for co-

optimising energy and reserve in the day-ahead market resulted in an estimated 2.1-3 billion 

US dollars over the period of 2007 to 2010.  

The benefits of co-optimisation for the European market have also been articulated in early 

work by European researchers (Doorman & Van Der Veen, 2013). Models for quantifying the 

performance of European markets on realistic case studies that rely on sequential models of 

European market clearing have been developed in previous work by the authors of this work 

(Aravena & Papavasiliou, Renewable Energy Integration in Zonal Markets, 2017), and are 

used as the modelling basis for representing the status quo of sequential market clearing in 

the present analysis. 

The implementation of co-optimisation in the sense of Article 40 of the EBGL, and the 

challenges that emerge when considering the interplay between the cross-zonal trading of 

balancing capacity and network constraints, is considered in a study led by N-SIDE (N-SIDE; 

AFRY, 2020). This report was followed by a detailed exposition of the required amendments 

to the EUPHEMIA algorithm (N-SIDE, 2022) for enabling the introduction of balancing 

capacity in the pan-European algorithm that couples day-ahead energy markets. Institutional 

challenges related to the implementation of co-optimisation are carved out in an 

implementation impact assessment that was recently led by ENTSO-E (ENTSO-E, 2021). 

The inefficiencies of sequential market clearing in European markets have been analysed in 

the academic literature in the past. The focus in past studies has often been on the treatment 

of network constraints, namely the classical zonal versus nodal debate (Kunz, 2013). 

Previous work on this topic has also been conducted by the authors of this work (Aravena & 

Papavasiliou, Renewable Energy Integration in Zonal Markets, 2017), (Aravena, Le te , 

Papavasiliou, & Smeers, 2021), and the modelling framework that is developed in this work 

is also adopted in the present study. An important attribute of these studies is the 

quantification of how irrevocable scheduling decisions3 that result from day-ahead markets 

can affect the efficiency of operating the system in real time. This has been the focus of the 

classical literature on stochastic unit commitment (Takriti, Birge, & Long, 1996). Following 

on this paradigm, we adopt a modelling convention that dates back from the work of Ruiz et 

al. (Ruiz, Philbrick, & Sauer, 2009), and is also adopted by the authors of the present work 

(Papavasiliou & Oren, Multi-Area Stochastic Unit Commitment for High Wind Penetration in 

 
3 We consider two types of scheduling decisions in the energy market, following standard academic and 
industry terminology. Commitment throughout the report refers to the on-off status of units, and dispatch refers 
to the setpoint, or equivalently the amount of energy production/consumption of a given asset. 
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a Transmission Constrained Network, 2013), whereby units are differentiated between fast 

and slow, depending on whether or not they can adapt their on-off status in real time.  

The modelling of multiple reserve products is another interesting aspect of our analysis. We 

focus on automatic and manual frequency restoration reserves in our work, in the spirit of 

previous analyses by the authors (Papavasiliou & Smeers, Remuneration of Flexibility using 

Operating Reserve Demand Curves: A Case Study of Belgium, 2017), with activation setpoints 

that vary every 4 seconds (in the case of aFRR) to 15 minutes (in the case of mFRR). The pan-

European balancing energy platforms PICASSO and MARI have recently been put in place for 

the cross-border trade of balancing energy between different Member States. 

The trade of balancing energy through MARI and PICASSO occurs across bidding zone 

borders. Since balancing capacity may or may not be activated in real time, this raises an 

interesting challenge of reserve deliverability. In the existing academic literature, the 

challenge of reserve deliverability has often been addressed by focusing on specific 

contingencies or assuming predefined distributions for imbalances (Zheng & Litvinov, 2008), 

(Chen, Gribik, & Gardner, 2014). Instead, in our analysis we present a novel model for reserve 

deliverability that relies on results from computational geometry (Bemporad, Filippi, & 

Torrisi, 2004), and ensures reserve deliverability in a flow-based network without any 

assumptions on the distribution of imbalances. This guarantee of reserve deliverability is 

referred to in the professional literature (N-SIDE; AFRY, 2020), (N-SIDE, 2022), (ENTSO-E, 

2021) as the deterministic requirement for trading cross-zonal balancing capacity. Although 

the deterministic requirement results, in principle, in a computationally hard problem 

(Nohadani & Kartikey, 2018), we are able to tackle the deterministic requirement in the 

market clearing model through a linear programming approximation. Our approximation of 

the requirement is empirically observed to strike an acceptable balance between 

computational scalability and conservativeness. 

 

1.3 Goal and structure of the study 

Our analysis is supporting the ongoing policy debate between the European Union Agency 

for the Cooperation of Energy Regulators (ACER) and market stakeholders regarding the 

design of European day-ahead markets for the cross-zonal trade of balancing capacity. For 

reasons that are explained in section 1.1, this is a key market design discussion for the future 

of the European market, and our analysis serves to offer a quantitative backing and precise 

description of the pros and cons of alternative design choices. 

The report is structured as follows: section 2 discusses the sources of inefficiency in the 

sequential clearing of balancing capacity markets followed by energy markets. Section 3 

outlines the methodology that is employed in our study in further detail. The case study of 
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the Core region of Europe is described in section 4, where we also present the results of our 

analysis. Section 5 summarizes the conclusions of our study. A number of appendices are 

included in this report, where we provide an explanation of notation and acronyms, a 

detailed account of our modelling assumptions, the data sources for our analysis, as well as 

additional simulations that have been performed in order to address targeted policy 

questions. 

 

2 Sources of inefficiency  
Breaking up inherently interdependent processes into pieces introduces inefficiencies. We 

focus the discussion in this section on inefficiencies related to market price forecast errors 

(section 2.1) and fixed costs (section 2.2), and we discuss the importance of intraday 

corrections in section 2.3. 

 

2.1 Price forecast errors 

Energy and balancing capacity interact, because they are both sourced from a given amount 

of generation capacity, and they are mutually exclusive. Co-optimisation resolves this 

challenge by accounting for this mutual exclusiveness in the auction model that clears the 

energy and balancing capacity market both at the same time. By contrast, sequential market 

clearing where balancing capacity is cleared before energy requires agents to anticipate the 

market price of energy, so that they can decide on the asking price for balancing capacity, 

which can be set equal to the profit margin that they forego from offering their capacity into 

the energy market. Concretely, the opportunity cost of a generator 𝑔 with a marginal cost 

𝑀𝐶𝑔 which anticipates an energy price 𝜆
∗ can be expressed as: 

max(0, 𝜆∗ − 𝑀𝐶𝑔)   (1). 

A rational agent bids this opportunity cost into the balancing capacity market. It can be 

proven that, in a market with convex costs and constraints4, if all agents correctly anticipate 

the perfectly competitive energy price, then the outcome of sequential market clearing is 

identical to that of co-optimisation. The intuition of this equivalence result is best understood 

in a single-period setting. The co-optimisation solution in such a setting can be achieved by 

allocating units with lower marginal costs for energy and more expensive units for balancing 

capacity. Note that this behaviour is precisely replicated by sequential market clearing, 

 
4 Convexity is violated whenever we require binary/on-off/take-it-or-leave-it decisions in order to represent 
costs and constraints. Examples of non-convexities include block orders, unit commitment decisions, min load 
costs, and startup costs. 
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because units with higher marginal costs effectively face lower opportunity costs in the 

balancing capacity market, as implied by equation (1). If all agents anticipate the same 

energy market prices, the agents with the highest marginal costs are therefore the ones to be 

cleared with highest priority in the balancing capacity market. The subsequent energy 

market is then cleared according to the merit order of the leftover units. Note that this is 

precisely the same outcome as that of co-optimisation. 

Anticipating perfectly competitive energy prices becomes a tall ask for market participants, 

especially in the presence of multiple interacting balancing capacity products and with 

markets of higher time resolution. Errors in market price forecasts can distort the efficient 

allocation of balancing capacity under sequential clearing, which can in turn lead to 

suboptimal matching in the energy market. Market price forecast errors therefore become a 

focal point of our analysis. Our methodology for simulating market price forecast errors is 

described in section 3.3. 

 

2.2 Fixed costs 

Fixed costs are costs incurred by a power generation unit for producing a non-zero amount 

of output5. Fixed costs are a complicating factor because they are incurred for providing both 

energy but also spinning balancing capacity. However, once a unit is started up for one or the 

other reason, it can provide both energy and balancing capacity. This points to the fact that 

these fixed costs are fundamentally non-separable when it comes to delivering energy and 

balancing capacity. 

Forcing a separation in the market clearing processes can lead to a situation where units with 

lower fixed costs and higher variable costs are inefficiently committed. This traces to the 

misrepresentation of fixed costs in the energy and balancing capacity auctions under 

sequential designs. The point is illustrated in appendix B. This effect, combined with the 

technical minimum of such units, can result in the inefficient displacement of low-cost 

technologies, as we demonstrate in section 4 of our report. 

 

2.3 The role of intraday adjustments 

It can be argued that some of the effects that are described above may be of minor 

importance, since agents can correct their schedules and commercial positions after day-

ahead market clearing and before real time. Our analysis is mindful of this phenomenon, and 

therefore relies on a balancing market model that simulates real-time operations after the 

 
5 Technically, these are referred to in economics as short-term quasi-fixed costs. They include startup and 
minimum load costs. 
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day-ahead market clears, as we describe in section 3.2. The question ultimately becomes 

which decisions are truly irrevocable in the day-ahead time stage (e.g. unit commitment 

decisions or dispatch setpoints of certain technologies). Our modelling methodology, which 

is described in section 3, is tailored to precisely quantify the effect of these irrevocable 

decisions. Note, however, that major reshuffling between day-ahead commercial positions 

and real-time physical positions places a big burden on intraday adjustments and may, to a 

certain extent, be wishful thinking, which is why we analyse the sensitivity of our results to 

the degrees of freedom that can be adjusted in the intraday time stage in section 4. 

 

3 Methodology 
This section describes the methodology that we employ in our analysis. Section 3.1 describes 

the models that we use for representing day-ahead market operations, while section 3.2 

describes the real-time balancing energy market model. Section 3.3 describes the process 

that we use for sampling price forecast errors, which are drivers for opportunity costs that 

are a crucial input in our analysis. Section 3.4 lays out some limitations in our analysis and 

discusses the extent to which such deviations are relevant for our assessment. Additional 

technical details on the methodology are provided in appendix D. Appendix E presents the 

mathematical formulation of the detailed market models that are used in our analysis. 

 

3.1 Day-ahead market clearing 

In this section we present the day-ahead market models that are developed for the status 

quo, the market-based allocation approach of Article 41 of EBGL, and the co-optimisation of 

Article 40 of EBGL. 

All models have a 15-minute time resolution, are unit-based, represent upward and 

downward aFRR and mFRR, and employ unit commitment constraints that account for 

minimum up and down times, ramp rates, and planned outages. Although European market 

operations are typically portfolio-based, the unit-based assumption offers a coordination 

advantage to the sequential market models and is anyway the only approach possible given 

the data that is available. This assumption is discussed further in section 3.4. For all day-

ahead models, we distinguish technologies between fast and slow. Fast and slow units can 

cover the needs of both aFRR and mFRR. Fast units are assumed to be able to cover mFRR 

even if they are offline. 
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3.1.1 Status quo 

The status quo is represented by a day-ahead balancing capacity market model which is 

followed by a day-ahead energy market model. The balancing capacity market model aims at 

minimising the sum of fixed costs plus opportunity costs, with the latter being derived from 

equation (1). We assume that the base energy price that is used for the estimation of 

opportunity costs in the sequential clearing model is based on the energy price of the co-

optimisation model. We add to this base energy price a price forecast error, which aims at 

accounting for the fact that generators cannot perfectly anticipate the energy price that 

would efficiently coordinate the market, as we discuss in section 2.1. The fixed costs that are 

included in the objective function of the model include both the minimum load cost of 

running a unit at its technical minimum plus any additional power generation implied by 

downward mFRR and aFRR capacity, as well as startup costs. Again, in the spirit of 

implementing a best-case (if not overly optimistic) version of the sequential clearing model, 

we assume that aFRR and mFRR are cleared jointly in a single balancing capacity market 

model that accounts for the interdependencies of the two balancing capacity products. We 

therefore ignore potential coordination inefficiencies and pricing distortions that result from 

the fact that sequential clearing of balancing capacity does not account for the one-way 

substitutability of balancing capacity products (Oren, 2001), and this despite the fact that at 

least certain European markets (e.g. the Nordics) aim at advancing with a sequential clearing 

of balancing capacity products (aFRR first, followed by mFRR). Min up/down times, and 

ramp rates are accounted for in this balancing capacity market model, even though these are 

not accounted for at unit level in a portfolio-based design. Fixed reserve requirements are 

used. The sources for these reserve requirements are discussed in section 4.1. The balancing 

capacity prices are computed from the dual multipliers of the market clearing constraints 

after binary variables are fixed to their optimal values (O'Neill, Sotkiewicz, Hobbs, Rothkopf, 

& Stewart, 2005). The status quo model does not trade balancing capacity between areas, 

with the exception of 80 MW that are traded between Austria and Germany, which aim at 

representing the Austrian-German aFRR cooperation6 initiative. 

Once the balancing capacity market model is cleared, we proceed to solve the day-ahead 

energy market model. This model is also unit-based and amounts to a unit commitment 

model where the aFRR and mFRR allocations of the balancing capacity market model are 

fixed. Since the unit commitment model directly models the interaction between unit 

commitment decisions and the ability of a unit to offer aFRR and mFRR, the model proceeds 

to start up and run units so that they can honour their aFRR and mFRR allocations, as decided 

in the balancing capacity model of the previous step. A zonal transmission network model 

with flow-based constraints is employed. The full capacity of cross-zonal network elements 

is made available to the energy market, and this is an essential distinction between the status 

 
6 https://www.entsoe.eu/network_codes/eb/alpaca/  

https://www.entsoe.eu/network_codes/eb/alpaca/
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quo model and the market-based allocation of section 3.1.2. Technical minimum and 

maximum constraints are included in the model, as well as ramp rates and minimum up and 

down time constraints. The objective function of the day-ahead energy market model aims 

at minimising load shedding costs plus generating unit fuel costs, startup costs, and 

minimum load costs. 

We note that the following assumptions could be argued to bias our analysis in favour of the 

sequential design: 

• We introduce fixed cost, ramp rates, and min up/down times in the first step of the 

sequential clearing model in a way that actually exceeds the expressiveness of the 

existing bidding language of the European market. Concretely, our model of balancing 

capacity markets is a unit-based model where the interdependency between starting 

up a unit and delivering balancing capacity is represented through precise unit 

commitment constraints that also account for ramp rates and the minimum up and 

down times of units and the interactions across balancing capacity products as well 

as between energy and balancing capacity. This is a modelling choice that offers a 

best-case (if not overly optimistic) outlook on the ability of the bidding language 

within a portfolio-based design to allow for endogenizing these constraints and costs. 

Portfolio owners in certain markets can trade their positions or disaggregate market 

outcomes into nominations of individual physical units, which can rationalise this 

optimistic modelling of the balancing capacity market to a certain extent. 

• We use the energy price of the co-optimisation model as input for the computation of 

opportunity cost for the balancing capacity market of the sequential design, which is 

an optimistic outlook on the ability of agents to anticipate efficient opportunity costs. 

 

3.1.2 Market-based allocation 

The model for representing market-based allocation is almost identical to that of the status 

quo (section 3.1.1), with the important difference that bidding zones are allowed to trade 

balancing capacity for aFRR and mFRR in the market-based allocation approach. 

The representation of the trading of balancing capacity introduces a notable complexity to 

the model, that was first highlighted in (N-SIDE; AFRY, 2020). A TSO that procures a certain 

amount of balancing capacity is effectively procuring an option to activate any amount of 

balancing energy in real time from zero up to the amount of balancing capacity that it has 

procured. In meshed networks governed by flow-based constraints, the market clearing 

model needs to be mindful of allocating these options in a way such that, no matter the 

pattern of activation of balancing energy in different bidding zones, the resulting flows do 

not violate the constraints of the network. This is a requirement that has been dubbed by 
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ENTSO-E as the so-called deterministic requirement for cross-zonal balancing capacity trade. 

This is a far more demanding requirement than scheduling energy trades that are planned to 

take place with certainty. The underlying model can be represented as a robust optimisation 

problem with decision-dependent uncertainty (Nohadani & Kartikey, 2018), which is 

inherently intractable. This challenge is resolved by (N-SIDE, 2022), where a formulation is 

proposed that aims at approximating the deterministic requirement through an inscribed 

box (Bemporad, Filippi, & Torrisi, 2004) that lies within the polytope of feasible cross-zonal 

balancing capacity trades. Whereas the latter is intractable to characterize, the former can be 

described straightforwardly by only ensuring that the upper-right corner of this box is within 

the polytope of feasible cross-zonal balancing capacity trades, and this turns out to be a 

mathematically tractable formulation. 

In addition to allowing for the trading of balancing capacity, we also introduce a constraint 

that requires no more than 10% of the remaining available margin of each critical network 

element with contingency to be allocated for the trade of balancing capacity. This constraint 

corresponds to an actual operational limit that is imposed by European regulation7. The 

rationale of the constraint is to prevent excessive allocation of cross-zonal capacity to the 

trade of balancing capacity. The effect of this constraint on the efficiency of the market-based 

method is analysed in our study. Moreover, we require that a bidding zone cannot import 

more than 50% of its balancing capacity requirement from other bidding zones (see footnote 

7). 

 

3.1.3 Co-optimisation 

The co-optimisation model jointly optimises the allocation of energy and balancing capacity 

in a single multi-product day-ahead auction. Upward and downward aFRR and mFRR are 

thus traded jointly with energy in this model. In contrast to sections 3.1.1 and 3.1.2 models, 

this one accounts directly for the fact that energy and balancing capacity are mutually 

exclusive when representing the technical minimum and maximum constraints. As in the 

case of the previous models, min up/down times and ramp rates are represented in the 

model. The cross-zonal trade of balancing capacity is possible in this model, as in the market-

based approach, and the deterministic requirement on the trade of balancing capacity is 

enforced. The network is represented again through flow-based constraints. Following 

 
7 Article 41(2) of (European Commission, 2017) states that: “Cross-zonal capacity allocated on a market-based 
process shall be limited to 10 % of the available capacity for the exchange of energy of the previous relevant 
calendar year between the respective bidding zones or, in case of new interconnectors, 10 % of the total installed 
technical capacity of those new interconnectors.”. 
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European regulation8, we impose a requirement that a bidding zone cannot import more 

than 50% of its balancing capacity requirement from other bidding zones. We observe that 

the constraint is not binding in the results. Note that this constraint is also present in the 

market-based model, where it is also non-binding. 

The objective of this model is to satisfy energy demand and balancing capacity requirements 

at least cost. Cost is measured as the sum of involuntary load shedding plus fixed min load 

and startup costs of units plus variable fuel costs. Note that the co-optimisation model does 

not require price forecast errors as input, since the opportunity cost of allocating generation 

capacity for reserve is accounted for, and optimised, endogenously in the model. 

 

3.2 Balancing market clearing 

An important aspect of our methodology is that we aim to quantify how distortions in day-

ahead market clearing affect the physical operation of the system in real time, which is the 

ultimate source of inefficiency in our analysis. For this purpose, it is necessary to capture the 

interplay between irrevocable decisions that are reached in the day-ahead stage, and how 

they limit the operation of the market in real time. These irrevocable decisions include unit 

commitment and the setpoint of certain technologies. The real-time market clearing model 

that emerges from fixing these decisions essentially represents the real-time balancing 

market, and it is the model that is used for ultimately measuring the efficiency of how the 

system is operated. The real-time model is common to all three approaches, and the only 

differentiating factor between the market designs is how these designs affect the irrevocable 

decisions (unit commitment and setpoint of certain technologies) by which we enter real-

time operations. The real-time model has the same 15-minute time resolution as the day-

ahead models. 

To capture the effect of irrevocable unit commitment decisions on real-time operations, we 

assume that whichever units are committed for balancing capacity in the day-ahead time 

stage still continue to be committed in real time. Moreover, we fix the setpoint of nuclear 

units to their day-ahead schedule. 

The balancing energy market model is otherwise similar to the day-ahead models presented 

above. It is an energy-only model, and costs include the variable costs of all technologies, as 

well as the fixed startup and min load costs of fast units. The network is represented again 

through flow-based constraints, where we repeat the same flow-based constraints of the day-

 
8 Annex VII of the System Operation Guideline (SOGL), (European Commission, 2017) states that: “The TSOs of 
a LFC block shall ensure that at least 50 % of their total combined reserve capacity on FRR resulting from the FRR 
dimensioning rules in Article 157(1) and before any reduction due to the sharing of FRR in accordance with Article 
157(2) remains located within their LFC block.”. 
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ahead model in the real-time model. Samples of balancing energy market operations are 

simulated by drawing a random realisation of renewable forecast errors, which the system is 

called to balance in real time. 

 

3.3 Price forecast errors 

As we discuss in section 2.1, price forecast errors affect the opportunity cost by which agents 

value the balancing capacity that they offer in the sequential market clearing designs (status 

quo and market-based allocation). In order to estimate these forecast errors based on 

historically available data, we compute the difference in prices between a given day and the 

preceding day of the same day type for the entire range of our dataset9. To this data we add 

independent Gaussian errors, in order to represent the fact that price forecast errors may 

differ between different market participants. This Gaussian noise has a mean of zero and a 

standard deviation which is 3% of the average day-ahead price. Figure 2 presents the 25th 

and 75th percentile of price forecast errors for the Belgian bidding zone, as estimated from 

the aforementioned procedure. 

 

  

 
9  We only use 2020 for historical price data. We originally also included 2021 and 2022 in our analysis, however 
this introduced significant price forecast errors due to the price spikes that resulted from the European natural 
gas crisis. We refer the reader to section 4.2 for a sensitivity analysis regarding this assumption. 
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Figure 2: Price forecast errors for the Belgian bidding zone for the eight different day types. The shaded areas represent the 

25th and 75th percentile for each hour of the day. 

 

3.4 Caveats 

In this section we discuss the effect of certain modelling assumptions on our analysis. We 

model the European market using a unit commitment model following the methodology in 

(Aravena & Papavasiliou, Renewable Energy Integration in Zonal Markets, 2017), as opposed 

to attempting to represent the bidding products that are used in the European day-ahead 

electricity market. This is a methodological necessity, because there is no historical record of 

bids in the energy and balancing capacity markets in a co-optimised setting, therefore we 

would need to devise/invent bids if we would insist on representing European market bids, 

as opposed to actual physical assets. We comment on how this may bias the analysis in favor 

of the status quo in the end of section 3.1.1.  

In particular, we do not emulate the current products of the European market (simple bids, 

block bids, complex orders, PUNs, etc.), since we consider them as portfolio-based proxies 

that anyway attempt to capture the true economical and technical characteristics of 

aggregations of individual thermal units. The assumption of a unit-based unit commitment 

and economic dispatch model also implies that we do not foresee an encoding of unique 

aspects of the European day-ahead market, particularly the no-PAB (no paradoxically 

accepted bids) requirement, in our market clearing model. Instead, and in order to cope with 

the pricing of non-convexities, our mathematical models are tailored to support so-called 

integer programming pricing as proposed by (O'Neill, Sotkiewicz, Hobbs, Rothkopf, & 

Stewart, 2005) (which can be interpreted as “marginal pricing” after binary variables are 

fixed to their optimal values). 

Notwithstanding our assumption, the operation of individual physical assets can be 

approximated to a certain extent with EUPHEMIA product specifications. As a naive 

approximation, for instance, one might consider mutually exclusive blocks which enumerate 

a set of alternative commitment trajectories. This same naive approximation may apply to 
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portfolios, where one could again consider trajectories of combinations of individual assets, 

and assign a fixed and variable cost to each of these trajectories. Arguably, mutually exclusive 

block offers (with minimum acceptance ratios less than one) can, to a certain extent, 

approximate the combinations of trajectories that a unit commitment model can consider, 

and then these offers can be linked (in the sense of multilateral bid linking (N-SIDE, 2022), 

(ENTSO-E, 2021)) with balancing capacity offers (without an associated price, i.e. a zero 

opportunity cost). 

The fact that we use a unit-based model should not be confused with ignoring portfolio 

effects. Concretely, our analysis accounts for the possibility of portfolio owners to fully 

coordinate the use of their assets in the intraday time stage. We refer the reader to the 

discussion in section 2.3, as well as the simulation results of section 4.2, for additional 

discussion on the effect of the coordination efficiencies of portfolios. 

Another assumption that is important to highlight is that we assume that co-optimisation in 

the sense of Article 40 of EBGL is properly implemented as an integrated single-shot 

optimisation of energy and balancing capacity. Although this might require a tighter 

coordination between power exchanges and TSOs in practice, which may be deemed as an 

institutional barrier in the European market design context, we nevertheless insist on 

performing our calculations without artificially splitting the process into a multi-step 

procedure, since this would, to a certain extent, defeat the purpose of co-optimisation. 

One additional difference between our model and actual market operations is the 

representation of the balancing capacity market in the sequential clearing models (the status 

quo model which corresponds to the existing market design, as well as the market-based 

model that is foreseen in Article 41 of EBGL). Here, we opt for an optimistic over-estimation 

of the potential performance of the European day-ahead balancing capacity market, whereby 

aFRR and mFRR are cleared jointly, where we assume that units can be bid into the market 

individually, and where we further assume that their fixed costs can be separated from their 

opportunity costs. This assumption anyway biases our analysis in favour of sequential 

market clearing designs. 

One additional point that may be interesting to investigate is the effect of our assumptions 

on how prices are formed in a non-convex setting. Concretely, we adopt the approach of 

(O'Neill, Sotkiewicz, Hobbs, Rothkopf, & Stewart, 2005) for computing prices in our non-

convex models, but alternatives could also be considered, e.g. the linear programming 

relaxation of the market model (which is a closer approximation of convex hull prices). This 

distinction matters, because it affects to what extent market prices can capture fixed costs in 

the price signal. And this in turn can affect the economic efficiency of different market design 

variants in our study because the energy prices computed by our co-optimisation model feed 
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into our estimate of opportunity costs in the sequential market clearing models. The effect 

of this assumption on our results may therefore warrant a sensitivity analysis in future work. 

Finally, we assume perfect competition and truthful bidding in our analysis. Thus, problems 

with market concentration in existing balancing capacity markets are not accounted for in 

our analysis. The social welfare impacts of improved competition due to co-optimisation are 

thus not quantified in our analysis. The possibilities for the sharing of reserves10 that are 

unlocked by co-optimisation and the market-based design are also not captured by our 

analysis. 

 

4 Case study 
In this section we describe the results of our analysis on a case study of the CORE region. 

Section 4.1 presents our sources and assumptions for input data. Section 4.2 compares the 

welfare performance of the different designs as well as various sensitivities. Additional 

details about the case study are provided in appendix F. 

 

4.1 Input data 

We analyse the Core region, which includes the following countries: Austria, Belgium, 

Croatia, Czechia, France, Germany, Hungary, Luxembourg, the Netherlands, Poland, Romania, 

Slovakia, and Slovenia. 

The database that concerns Central Western Europe (CWE) has been developed by our team 

since 2014 from a variety of sources that are described in a number of scientific publications, 

including (Aravena & Papavasiliou, Renewable Energy Integration in Zonal Markets, 2017). 

This includes detailed technical and economic information about networks, generators, 

loads, and renewable supply, that has been assembled from a variety of public and private 

databases. The details of how we have assembled the generation mix for the European 

market are described in (Aravena & Papavasiliou, Renewable Energy Integration in Zonal 

Markets, 2017). 

Load, renewable supply and hydrology. Demand data is sourced from historical profiles of 

national consumption which are available in TSO websites and the ENTSO-E transparency 

 
10 Exchange of balancing capacity refers to the practice whereby a system operator can procure its own 
balancing capacity needs from a neighboring control area through exclusive access to the balancing capacity in 
question. In the sharing of balancing capacity, TSOs operating neighboring control areas gain non-exclusive 
access to the same balancing capacity, counting on the fact that the two system operators will not require the 
same resource simultaneously. 
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platform11. This includes data with both 15-minute as well as hourly resolution. Photovoltaic 

and wind supply data is sourced from TSO websites with a temporal resolution of 15 minutes. 

Hydropower injections are also sourced from TSO websites. Note that we do not model the 

medium-term planning of hydropower endogenously in our model, but rather consider the 

use of hydro as an exogenous parameter. On the other hand, we do model the short-term 

optimisation of pumped hydro resources and we also model hydro reservoirs by fixing their 

water level at the beginning and end of the day to their historical values. A detailed 

description of the model of pumped hydro resources, and their precise treatment in the co-

optimisation and sequential designs, is provided in appendix E. 

An operational year is described by considering eight representative days, which we refer to 

as day types. Day types affect the following input data: load, renewable supply, and hydrology. 

There are eight day types, one for each season and weekday versus weekend. The 

representative day of each day type is chosen using the approach described in  (Aravena & 

Papavasiliou, Renewable Energy Integration in Zonal Markets, 2017). For each day type we 

have 145 profiles of renewable supply data available. These samples are the input that is used 

in the real-time balancing market simulations. On the other hand, the day-ahead simulations 

are run using the average renewable supply data.  

Network. As we discuss in section 3, we use a zonal flow-based model for representing the 

network in our study. The flow-based polytopes that are used in our analysis correspond to 

actual operations and are sourced from the JAO website12. We assign a flow-based polytope 

to each day by randomly selecting a day that belongs to the day type in question and selecting 

the corresponding polytope. 

Generation. Generation data has been assembled from a database that has been provided to 

our group from industrial partners of our team. The system has an installed capacity of 

594.347 GW, and the different technologies that are included in the mix are presented in 

Table 1. Fast units are those units that have a minimum down time that is no greater than 

four hours, regardless of technology. The model consists of 306 fast units with a total capacity 

of 139.634 GW, and 312 slow units with a total capacity of 182.961 GW. Wind and solar 

generation do not belong to either category. 

 

Technology Capacity (GW) 
Biomass 12.034 

Gas 87.728 
Fossil hard coal 46.511 

Waste 1.574 

 
11 https://transparency.entsoe.eu/  
12 https://publicationtool.jao.eu/core/finalComputation  

https://transparency.entsoe.eu/
https://publicationtool.jao.eu/core/finalComputation


23 
 

Nuclear 82.087 
Brown coal/lignite 38.281 

Oil 6.685 
Coal-derived gas 2.331 

Hydraulic pumped storage 22.960 
Wind 119.084 

Hydraulic run of river 27.246 
Hydraulic reservoir 19.273 

Solar 128.553 
Total 594.347 

Table 1: Technologies and their corresponding capacity. 

 

Reserve requirements. Reserve requirements are drawn from diverse sources and include 

requirements for aFRR and mFRR in both the upward and downward directions. Note that 

frequency containment reserve (FCR) is not represented in our model. For Poland, Croatia, 

Hungary, and Romania we obtain the reserve requirements from the ENTSO-E transparency 

platform. For Austria, France, Slovenia, Czechia, and Slovakia we have collected this 

information from direct communication with TSOs or national regulators. For Belgium, 

Germany, Luxembourg, and the Netherlands we use the websites of the national TSOs. 

 

4.2 Welfare comparison 

In this section we report on the costs of the alternative designs. This is equivalent to reporting 

on welfare when there is no load shedding (which is the case in all our models), since losses 

in consumer welfare are zero under all designs and the only driver of welfare is production 

cost. The results in this section focus on the comparison of the sequential designs to co-

optimisation. Additional sensitivity analyses are presented in appendix G. 

Cost comparison of alternative designs. The relative performance of the different market 

designs in terms of cost is presented in Figure 3. We note that co-optimisation improves costs 

of system operation by approximately 2.1% relative to the status quo, while the market-

based design reaps 0.3% of these cost savings. The efficiency gains of the co-optimisation 

design translate to 678 million € per year for the Core region, while those of the market-

based approach translate to 84 million € per year for the Core region, relative to the status-

quo design. Extrapolating these savings to the produced and consumed energy of the entire 

EU for 2023 indicates a potential cost saving of 1281 million € per year from co-optimisation 

relative to the status quo and a potential cost saving of 159 million € per year from market-

based relative to the status quo. 
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Figure 3: Cost comparison of the co-optimisation and market-based approach relative to status-quo. Relative values are 

presented in the left, and absolute values (in € per year) are presented in the right. 

 

The inefficiencies of sequential market clearing, which already alluded to in section 2 and 

appendix B, can be attributed to the suboptimal commitment of units with high fixed costs 

for reserve, which leads to an inefficient dispatch of nuclear power in the energy clearing 

module. We now proceed to a detailed analysis of these efficiency losses in our case study. 

The role of fixed costs. An important practical challenge in sequential designs is the fact 

that fixed costs are not decomposable. This means that fixed costs need to be committed once 

for delivering both energy and balancing capacity, and there is no natural way to decompose 

this fixed cost between providing one or the other. This presents market participants with 

the challenge of deciding how to offer fixed costs in the energy and balancing capacity 

market. As we explain in our modelling assumptions in section 3.1, we assume full fixed cost 

bidding in both the energy and balancing capacity market. Concretely, (i) fixed costs are 

assumed to be fully bid into balancing capacity markets, and (ii) for units that are not cleared 

in the balancing capacity market, their fixed costs are bid again in the day-ahead energy 

market that follows the balancing capacity market.  

Figure 4 presents the balancing capacity allocations of co-optimisation and the sequential 

clearing design. The units are ordered on the x axis in order of increasing fixed cost (i.e. units 

to the right of the figure have a higher fixed cost). Orange crosses indicate units that are 

allocated to balancing capacity by each design, and green crosses indicate units that are 

committed by one design and not the other. 

We observe that, whereas co-optimisation allows an allocation of balancing capacity for units 

with relatively high fixed costs (observe the green crosses further to the right of the left panel 

in the figure), the sequential clearing design avoids this. The co-optimisation design correctly 

commits these units because it does not misrepresent fixed costs, since fixed costs can cover 

two needs: energy and balancing capacity. On the other hand, sequential clearing 

misrepresents fixed costs, and chooses to avoid committing the units that are indicated with 

the green crosses in the left panel of Figure 4. 
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Figure 4: Balancing capacity commitment for co-optimisation (left) and status-quo (right). The y-axis is the marginal cost of 

the unit, while the x-axis is the generator index. The x-axis is ordered in order of increasing fixed cost. 

 

The role of technical minima. An important driver for the efficiency gains of co-

optimisation is the coordination between technologies with low marginal cost (such as 

nuclear technology) and the technical minima of thermal units. We now proceed to explain 

this phenomenon.  

The left part of Figure 5 demonstrates that the co-optimisation design is able to use more 

nuclear energy. As indicated in Table 2, nuclear units are non-dispatchable, meaning that 

their real-time dispatch is fixed to the day-ahead setpoint and cannot be adapted to real-time 

conditions. The reason why the co-optimisation design is able to absorb more nuclear power 

in the day-ahead stage is that its production is not displaced by units that are running at their 

technical minimum. Instead, and as indicated in the right part of Figure 5, the sequential 

designs commit resources in the day-ahead stage that result in a higher sum of technical 

minima. 

 

  
Figure 5: Left panel: dispatch of nuclear in the three designs in the day-ahead market. Right panel: sum of technical minimum 

of all units that are committed in the day-ahead stage under the different designs. 
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In order to understand why this is happening, we can categorize the units that are committed 

by the sequential designs in the day-ahead stage (after clearing both day-ahead balancing 

capacity and day-ahead energy) as follows: 

• Natural gas units booked for balancing capacity. As indicated in Table 2, these units 

have a relatively high marginal cost and medium fixed costs.  

• A certain number of units (which include coal, lignite, and natural gas) with high fixed 

costs but lower marginal cost compared to the gas units of the first category.  

• Certain nuclear power units with high fixed cost but low marginal cost. 

The co-optimisation does not commit the first category of units in the day-ahead stage. 

Instead, it uses the second category of units for covering balancing capacity requirements. 

This in turn implies that the first category of units is not taking up space from the dispatch 

of low-marginal-cost resources (such as nuclear energy). 

The sequential design commits the first category of units because they are more attractive 

from the point of view of the balancing capacity auction due to their moderate fixed costs. 

However, it also commits the second category of units at the day-ahead energy market. 

Consequently, these units inefficiently displace nuclear units in the day-ahead energy 

auction. Instead, the co-optimisation design accounts for the fact that the fixed costs of the 

second category of units may be high, but these fixed costs can be incurred once for covering 

two purposes, i.e. satisfying both energy demand as well as balancing capacity requirements. 

Crucially, the accumulated technical minimum of the units that are committed in the day-

ahead stage by the co-optimisation design is lower, and this allows for more nuclear energy 

to be dispatched in the day-ahead stage. 

 

The role of intraday adjustments. The sequential clearing designs can benefit strongly 

from a drastic reallocation of units between the day ahead and real time. Concretely, units 

that are cleared for offering balancing capacity in the day-ahead time stage end up with a 

significantly higher energy setpoint in real-time operations. Certain Member States allow for 

bilateral out-of-market arrangements after the day-ahead market clears (e.g. trading 

balancing capacity responsibilities). It is not clear that intraday auctions or continuous 

intraday trading can serve this purpose, especially since the market products defined in these 

auctions are not necessarily offering a more expressive bidding language than the day-ahead 

market. It means that if the day-ahead market is subject to such coordination inefficiencies 

then the intraday market may be subject to similar coordination inefficiencies. Another 

alternative to bilateral out-of-market trades and intraday markets could be reallocations 

within portfolios. The perfect reallocation modelled in our analysis would implicitly require 

a single portfolio in the entire market, which is clearly an idealized assumption that is not 

(and cannot be, due to competition requirements) fulfilled in practice.  
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To establish this point, in addition to the welfare gains that are quantified by the full sequence 

of day-ahead and balancing market clearing, we also report on the welfare gains of co-

optimisation in the day-ahead market alone. 

Concretely, the co-optimisation model achieves efficiency gains of 3.9% relative to status-

quo, which means that intraday and real-time adjustments are able to improve the wedge 

between co-optimisation and status quo from 3.9% to 2.1%. Similarly, the day-ahead market-

based design achieves a performance improvement of 0.8% relative to status quo. This 

means that intraday adjustments decrease the wedge of market-based relative to status quo 

from 0.8% to 0.3%. The savings of the co-optimisation design relative to status quo, as 

documented by the day-ahead market model alone, translate to 1218 million € per year and 

the savings of the market-based design as documented by the day-ahead model alone 

translate to 239 million € per year for the Core region. Figure 6 depicts this point graphically, 

where we present the welfare gains of the market-based approach and of co-optimisation for 

the day-ahead models alone (which can be considered as an upper bound on efficiency losses, 

with no intraday adjustments) as well as the welfare gains from the real-time models (which 

can be considered as a lower bound on efficiency losses, with full intraday adjustments). 

 

Figure 6: Efficiency savings of different designs relative to status quo. The upper bound corresponds to the results of the day-
ahead market models alone, whereas the lower bound corresponds to the outcome of the balancing market, i.e. it accounts for 

intraday corrections. 

 

Effect of price forecast error. Price forecast errors can introduce inefficiencies in the 

commitment of resources under the sequential designs, as we discuss in section 2.1. It turns 

out that, for our case study, these day-ahead inefficiencies can largely be corrected through 

intraday adjustments (assuming such adjustments are possible in practice). We now proceed 

to discuss this issue in detail. 
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Figure 7 presents the daily cost of operations under the two sequential designs, namely 

market-based and status quo. The left panel presents the performance when price forecast 

errors are calibrated against the historical price data of 2020 according to the procedure that 

is described in section 3.3 and appendix D3. The right panel performs the same exercise 

when price forecast errors are calibrated against the historical price data of 2020-2022, 

which includes two years of energy crisis in Europe, and thus arguably leads to greater price 

forecast errors. The runs with price forecast errors include the sampling of these errors, thus 

these are not point observations, but rather independent samples of costs, and the orange 

bar indicates the 95% confidence interval of the average cost. As we can expect, the increased 

price forecast errors in 2020-2022 which imply greater price forecast errors also imply 

greater inefficiency in the day-ahead market models, which is confirmed by the clearer 

separation between the orange bar and the blue dot in the right panel of Figure 7.  

  
Figure 7: Daily cost of operation in day-ahead market clearing with and without price forecast errors. Left: price forecast 

errors based on 2020 historical price data. Right: price forecast errors based on 2020-2022 historical price data. 

Whereas the day-ahead costs are more clearly separated in Figure 7, we note from Figure 8 

that the costs without price forecast errors (blue dots) land within the confidence intervals 

of the models with price forecast errors (orange bars). Note also that what changes from the 

day-ahead to real-time simulations is the width of the orange bars, i.e. the variance of the 

observations in the real-time model, due to uncertainty in real-time imbalances. This 

observation means that cost differences between the models with and without price forecast 

errors are now within the range of statistical noise, and it cannot be ruled out that the 

inefficient commitments that are caused in the day-ahead due to price forecast errors are 

largely undone by intraday adjustments. 
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Figure 8: Daily cost of operation in real-time market clearing with and without price forecast errors. Left: price forecast 

errors based on 2020 historical price data. Right: price forecast errors based on 2020-2022 historical price data. 

Figure 9 further supports the claim that intraday corrections can largely correct for 

inefficient day-ahead commitments. This figure indicates the amount of reserve capacity that 

is allocated to different units in the models with (orange, where we present average values) 

and without (blue) price forecast errors. The important observation in this figure is that, 

although the two models may commit reserves differently between the different units (due 

to price forecast errors), the same units are chosen for the provision of this reserve. Since 

commitment is the only irrevocable decision that concerns the operation of these units when 

moving from day-ahead to real-time operations, it means that the outcome of the models will 

be largely the same in real time, as both the model with and without price forecast errors will 

be facing largely the same set of irrevocable day-ahead decisions during real-time operation. 

 

Figure 9: Amount of reserve committed in the models with and without price forecast errors in the status quo design. 

 

Use of cross-zonal capacity. In Figure 10 we report the use of cross-zonal capacity on the 

different links of the CWE network (we do not present all links of the model, since there are 
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too many and this would obscure the presentation of the results). The net position of the 

different bidding zones in upward balancing capacity (aFRR and mFRR), downward 

balancing capacity (aFRR and mFRR) and energy is presented in Figure 11. 

 

Figure 10: Use of cross-zonal capacity on the CWE links for trading balancing capacity (sum of aFRR and mFRR) under the 
different designs. The red dots indicate the 10% limit. 

 

  

 
Figure 11: Upper left: upward (aFRR and mFRR) balancing capacity net position. Upper right: downward (aFRR and mFRR) 

balancing capacity net position. Bottom: energy net position. 
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5 Conclusions 
The co-optimisation of energy and reserves can deliver coordination efficiencies that are 

driven by more efficient scheduling of power generation. We develop a modelling framework 

for quantifying these benefits and present a case study on the application of this framework 

to the Core region of Europe, which covers a geographic area with 594 GW of installed 

generation capacity.  

We estimate that co-optimisation can deliver 678 million € per year of savings in operational 

costs for the Core region relative to the status quo of sequential clearing of balancing capacity 

followed by energy. The market-based allocation of Article 41 of EBGL achieves 84 million € 

per year relative to the status quo for the Core region. Extrapolating these figures to EU level 

(2670 TWh, compared to 1338 TWh of the Core region) indicates a potential cost saving of 

1281 million € per year from co-optimisation relative to the status quo and a potential cost 

saving of 159 million € per year from market-based relative to the status quo. 

The drivers for these efficiency gains relate to the misrepresentation of fixed costs in 

sequential designs, which result in an inefficient commitment of resources with relatively 

low fixed costs. Due to their technical minima, these resources replace inflexible lower-cost 

resources that could have been used instead in real time for serving forecast demand as well 

as imbalances. Co-optimisation avoids this pitfall by accounting for the fact that fixed costs 

are incurred once at the day-ahead stage for delivering both energy as well as balancing 

capacity, and selecting a mix of commitments in real time that is not constrained by rigidities 

related to technical minima and allows the system to rely as much as possible on inflexible 

low-marginal-cost resources. 

The sequential clearing models rely heavily on intraday corrections. If such intraday 

corrections fail to materialise, we estimate an increase in the efficiency gains of co-

optimisation relative to status quo to 1218 million € per year, with the market-based 

allocation of Article 41 of EBGL capturing 239 million € per year of savings relative to the 

status quo for the Core region.  

Sequential designs rely on bidding opportunity costs for balancing capacity, and this can 

introduce errors in day-ahead scheduling in case of price forecast errors. This is especially 

so if one accounts for the appreciable price volatility that occurred in 2021 and 2022. 

Nevertheless, our modelling estimates that intraday corrections can largely absorb the 

adverse effect of these price forecast errors, to the extent that sequential designs with price 

forecast errors attain an average cost that is within the 95% confidence interval of the 

average cost of sequential designs without price forecast errors. 

Our basic model has been used for a range of sensitivity analyses. In section G1 we analyse 

the effect of bidding opportunity costs explicitly in the day-ahead market under the co-
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optimisation design. Bidding opportunity costs is not necessary in co-optimised multi-

product energy and balancing capacity auctions (in the same way that bidding for the 

opportunity cost of transmission explicitly is not necessary in co-optimised multi-product 

energy and transmission auctions). Doing so results in accounting for the opportunity costs 

of balancing capacity both in the objective function of the model as well as in the constraints 

of the market model, and thus in scheduling inefficiencies. Our modelling estimates these 

inefficiencies at approximately 100 million € per year in the Core region. 
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Appendix A: Acronyms 
This appendix contains the list of acronyms that are used in the report. 

ACER: European Union Agency for the Cooperation of Energy Regulators 

aFRR: automatic Frequency Restoration Reserve 

EBGL: Electricity Balancing Guideline 

EUPHEMIA: EU Pan-European Hybrid Electricity Market Integration Algorithm 

mFRR: manual Frequency Restoration Reserve 

RR: Replacement Reserve 

TSO: Transmission System Operator 

 

Appendix B: Coordination inefficiencies 
In section 2.2 we argue that fixed costs can result in a deviation of sequential market clearing 

from the co-optimisation outcome. This appendix provides a concrete example that 

illustrates this point. 

We consider a system with 100 MW of inelastic load and 100 MW of balancing capacity 

requirements. Suppose that the system has two units.  Unit G1 has a capacity of 210 MW, a 

marginal cost of 0 €/MWh, and a fixed cost of 1000 €. Unit G2 has a capacity of 100 MW, a 

marginal cost of 100 €/MWh and a fixed cost of 500 €. 

The co-optimisation model commits unit G1 only. In the case of sequential market clearing, 

assuming that all agents compute their opportunity costs from equation (1) by anticipating 

a market clearing price of 0 €/MWh (the marginal cost of unit G1) in the energy market, both 

units G1 and G2 are committed. The same commitment occurs if agents anticipate a market 

clearing price of 100 €/MWh (the marginal cost of unit G2). 

The erroneous commitment of units in the sequential design can be understood in terms of 

the error in committing unit G2 in the balancing capacity auction, where the lower fixed cost 

of unit G2 relative to unit G1 leads to the inefficient decision of committing unit G2 in the 

balancing capacity market. Instead, the co-optimisation model correctly anticipates that unit 

G1 can cover both energy and balancing capacity demand by incurring its slightly higher fixed 

cost but then benefitting from its lower marginal cost. 

 



34 
 

Appendix C: Nomenclature 
The following nomenclature is used in the market clearing models that are presented in our 

study. 

 

Sets 

𝐺: set of generators 

𝑍: set of zones 

𝐺(𝑧): set of generators at zone z 

𝐺𝑅(𝑧): set of renewable generators at zone z 

𝐺𝑓𝑎𝑠𝑡: set of fast generators 

𝐺𝑠𝑙𝑜𝑤: set of slow generators 

𝑇15: set of 15-minute time steps over a 24-hour horizon 

𝑇60: set of hourly time steps over a 24-hour horizon 

𝐶𝐵: set of critical branches 

𝐹𝑍𝑘: from zone of link 𝑘 

𝑇𝑍𝑘: to zone of link 𝑘 

 

Variables 

𝑝𝑔𝑡: power production of unit 𝑔 

𝑝𝑧𝑡
𝑅/𝑃𝑆

: power production of hydro (R reservoir, PS pumped storage) at zone  𝑧 

𝑑𝑠𝑧𝑡: demand of pumped storage at zone  𝑧 

𝑣𝑧𝑡
𝑅/𝑃𝑆

: hydro storage at zone  𝑧 (R reservoir, PS pumped storage) 

𝑙𝑠𝑡: load shedding at time period 𝑡 

𝑤𝑔𝑡: commitment of unit 𝑔 at time period 𝑡 

𝑧𝑔𝑡: start-up of unit 𝑔 at time period 𝑡 

𝑟𝑧𝑡: net injection of energy at zone 𝑧 at time period 𝑡 
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𝑓𝑟𝑛𝑡: maximum flow of reserve on line 𝑛 at time period 𝑡 

𝑓𝑟𝑛𝑡
+/−

: upward/downward (+/-) flow of reserve on line 𝑛 at time period 𝑡 

𝑑𝑟𝑧
+/−

: upward/downward (+/-) demand for reserve at zone 𝑧 

𝑛𝑟𝑧𝑡: upward/downward (+/-) net injection of reserve in zone 𝑧 at time period 𝑡 

𝑠𝑔𝑡
+𝑚𝐹𝑅𝑅/+𝑎𝐹𝑅𝑅

: upward reserve allocation for unit 𝑔 at period 𝑡 

𝑠𝑔𝑡
−𝑚𝐹𝑅𝑅/−𝑎𝐹𝑅𝑅 

: downward reserve allocation for unit 𝑔 at period 𝑡 

 

Parameters 

𝑀𝐶𝑔: marginal cost of generator 𝑔 

𝐾𝑔: no-load cost of generator 𝑔 

𝑆𝑔: start-up cost of generator 𝑔 

𝑃𝑅𝑔: production of renewable generator 𝑔 

𝐷𝑧𝑡: energy demand of zone 𝑧 at time period 𝑡 

𝑃𝑇𝐷𝐹𝑘𝑧: power transfer distribution factor, zone 𝑧 on link 𝑘 

𝑅𝐴𝑀𝑘: remaining available margin for link 𝑘 

𝐴𝑘,𝑘′: parameter of contribution of reserve flow on link 𝑘’ to flow on link 𝑘 

𝑅𝑧
𝑚𝐹𝑅𝑅/𝑎𝐹𝑅𝑅

 : reserve requirement for zone 𝑧 

𝑅𝑧
−𝑚𝐹𝑅𝑅/−𝑎𝐹𝑅𝑅

 : downward reserve requirement for zone 𝑧 

𝑃𝑔
+/𝑃𝑔

−: technical maximum/minimum of generator 𝑔 

𝑅𝑔
+/𝑅𝑔

−: ramp-up/down rate of generator 𝑔 

𝐷𝑇𝑧
𝑚𝐹𝑅𝑅/𝑎𝐹𝑅𝑅

: delivery time of the reserve products for zone 𝑧 

𝑈𝑇𝑔/𝐷𝑇𝑔: minimum up/down time of unit 𝑔 

𝑉𝑂𝐿𝐿: value of lost load 

𝐹𝑍𝑘/𝑇𝑍𝑘: from-to zone of link 𝑘 

𝜇: pumping efficiency  
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Appendix D: Technical details on methodology 
Before describing the precise models that are used in our analysis in appendix E, we discuss 

certain methodological choices that we have adopted in our analysis. 

 

D1 Sequence of decision-making 

A basic methodological focus in our analysis is to capture the effect of lack of coordination on 

irrevocable decisions related to the physical commitment of units in the market. The 

following features are therefore central to our analysis: (i) the decisions of how units are 

scheduled (with a specific emphasis on unit commitment), and (ii) the sequential nature of 

interaction between day-ahead and balancing markets. 

For the purpose of describing how units are scheduled, we resort to a unit-based unit 

commitment model. The goal here is to avoid any subjective assumptions on how units are 

aggregated into portfolios, since transparent data on portfolio offers is not available. Instead, 

there is available data on which units exist in the European system, and their precise location 

within bidding zones. 

For the purpose of describing interactions between the day-ahead stage and the balancing 

market, we develop models for both stages. These models are linked through the irrevocable 

decisions of unit commitment. The balancing stage includes an explicit model of uncertainty 

in net demand, which is driven by renewable forecast errors. 

As we explain in section 1.2, we focus our analysis on automatic frequency restoration 

reserve (aFRR) and manual frequency restoration reserve (mFRR). We distinguish between 

fast and slow units in our model. Both types of units are able to cover both aFRR and mFRR 

requirements. Fast units are able to adjust their commitment and dispatch in real time, 

whereas slow units can only adjust their dispatch in real time. 

To give a more specific understanding of the precise structure of our modelling approach, we 

present an outline of the different models that are run in sequence in Figure 12. The day-

ahead models (whether they describe co-optimisation or sequential market clearing) are 

complemented by a balancing energy module which aims at evaluating the quality of the 

commitment decisions over a set of real-time conditions, which correspond to a variety of 

renewable profiles. Concretely, the day-ahead models are solved using a forecast of 

renewable production which is expected to occur during the next day. This forecast typically 
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deviates relative to the real-time production of renewable energy. Therefore, balancing 

capacity is introduced in the day-ahead market in order to react to the possible imbalances 

that emerge in real time. This relationship leads to a linkage between the day ahead and real 

time, which is depicted in Figure 12. The output of the day-ahead model is the commitment 

decisions of generators. The balancing energy model is then solved, and corresponds to an 

economic dispatch model for which the commitment of slow generators is fixed to the day-

ahead commitment solution. We also fix units that are providing balancing capacity to remain 

on in real time. The dispatch of nuclear is also assumed to be fixed to its day-ahead level, in 

line with similar assumptions that have been adopted in past academic literature 

(Papavasiliou & Smeers, Remuneration of Flexibility using Operating Reserve Demand 

Curves: A Case Study of Belgium, 2017). 

 

Figure 12: Linkage between the day-ahead and balancing energy models. 

 

D2 Modelling sequential decisions 

Sequential designs require an estimate of the opportunity cost of allocating generation 

capacity for the provision of balancing capacity instead of energy. This is depicted graphically 

in Figure 13. 

 

Figure 13: The opportunity cost of allocating balancing capacity is driven by the marginal cost of a unit as well as the 
anticipated energy price. 
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By allocating a slice of generation capacity 𝑑𝑥 to the balancing capacity market, instead of 

using it for selling energy at a price 𝜆∗, we arrive to the opportunity cost of a generator 𝑔: 

𝑂𝐶𝑔 =  max(𝜆∗ − 𝑀𝐶𝑔, 0) 

This opportunity cost is used in the objective function of the balancing capacity market 

models of the sequential designs, as we explain in sections E2 and E3. 

 

D3 Price forecasts 

A possible source of inefficiency in sequential market clearing is the fact that the opportunity 

costs described in section D2 may be computed using erroneous forecasts of energy market 

prices. We now describe how we model such forecasts. 

Our starting point for price forecasts is the energy price that is computed from the co-

optimisation model. To this we add a price forecast error. This forecast error is calculated as 

the randomly sampled difference between the energy price of historical day d and the energy 

price of the previous historical day of the same type for the year 202013. In order to allow 

this forecast error to further vary between market participants, we introduce additional 

noise by randomly sampling from a zero-mean normal distribution with a standard deviation 

of 3% of the average day-ahead price. 

 

D4 The deterministic requirement 

As we explain in section 1.2, a novel aspect of our analysis is a linear approximation of the 

so-called deterministic requirement which guarantees that cross-zonal trades of balancing 

capacity do not overload the network. The challenging aspect of enforcing this requirement 

is that balancing capacity may or may not be activated in real time. We guarantee the 

deliverability of balancing capacity by using the following formulation, that ensures that the 

deterministic requirement is satisfied: 

𝑛𝑒𝑧 = ∑ 𝑝𝑔

𝑔∈𝐺:𝑍𝑔=𝑧

− 𝐷𝑧  

∑ 𝑛𝑒𝑧

𝑧∈𝑍

= 0 

 
13 We perform a sensitivity analysis in section 4.2, where we use historical data from 2020-2022 instead of just 
2020. Price volatility over these additional crisis years was significantly higher, and this sensitivity analysis 
allows us to quantify the sensitivity of our results on the magnitude of price forecast errors. 
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𝑛𝑟𝑧 = ∑ 𝑟𝑔

𝑔∈𝐺:𝑍𝑔=𝑧

− ∑ 𝑑𝑟𝑙

𝑙∈𝑅𝐿:𝑍𝑙=𝑧

 

𝑛𝑟𝑧 = ∑ 𝑓𝑟𝑘

𝑘∈𝐾:𝐹𝑍𝑘=𝑧

− ∑ 𝑓𝑟𝑘

𝑘∈𝐾:𝑇𝑍𝑘=𝑧

, 𝑧 ∈ 𝑍 

∑ 𝑃𝑇𝐷𝐹𝑧𝑘 ∙

𝑧∈𝑍

𝑛𝑒𝑧 + ∑ max(𝐴𝑘,𝑘′ , 0) ∙

𝑘′∈𝐾

𝑓𝑟𝑘′ ≤ 𝑅𝐴𝑀𝑘 , 𝑘 ∈ 𝐾 

The non-trivial constraint is the last one, which is based on (Bemporad, Filippi, & Torrisi, 

2004). The parameter 𝐴𝑘,𝑘′ is defined as follows: 

𝐴𝑘,𝑘′ = 𝑃𝑇𝐷𝐹𝐹𝑍𝑘′,𝑘 − 𝑃𝑇𝐷𝐹𝑇𝑍
𝑘′ ,𝑘. 

Appendix E: Technical details on models 
In this section we describe the models that are used in our analysis. 

 

E1 Co-optimisation model 

We formulate the day-ahead co-optimisation model as follows: 

min
1

4
( ∑ ∑ 𝑀𝐶𝑔𝑝𝑔𝑡 + 𝑉𝑂𝐿𝐿 𝑙𝑠𝑡) +

𝑔∈𝐺

∑ ∑ (𝐾𝑔 𝑤𝑔𝑡 + 𝑆𝑔𝑧𝑔𝑡)

𝑔∈𝐺 𝑡∈𝑇60𝑡∈𝑇15

 
(E.1) 

∑ 𝑝𝑔𝑡 + 𝑝𝑧𝑡
𝑅 + 𝑝𝑧𝑡

𝑃𝑆 − 𝑑𝑠𝑧𝑡 + ∑ 𝑃𝑅𝑔𝑡

𝑔∈𝐺𝑅(𝑧)

+ 𝑙𝑠𝑡𝑧 − 𝑟𝑧𝑡 = 𝐷𝑡𝑧 , 𝑡 ∈ 𝑇15, 𝑧 ∈ 𝑍 

𝑔∈𝐺(𝑧)  

 (E.2) 

∑ 𝑃𝑇𝐷𝐹𝑛𝑧 𝑟𝑧𝑡 +  ∑ max (𝐴𝑛,𝑛′, 0) ∙

𝑛′∈𝐶𝐵

𝑓𝑟𝑛′ ≤ 𝑅𝐴𝑀𝑛, 𝑡 ∈ 𝑇15,  𝑛 ∈ 𝐶𝐵 

𝑧∈𝑍 

 (E.3) 

∑ 𝑟𝑧𝑡

𝑧∈𝑍 

= 0, 𝑡 ∈ 𝑇15 (E.4) 

𝑑𝑟𝑧
−/+

= 𝑅𝑧
−/+ 𝑚𝐹𝑅𝑅

+  𝑅𝑧
−/+𝑎𝐹𝑅𝑅

, 𝑧 ∈ 𝑍 (E.5) 

     𝑛𝑟−/+ 𝑧𝑡 = ∑ 𝑠𝑔𝑡
−/+𝑚𝐹𝑅𝑅

𝑔∈𝐺(𝑧)

+ 𝑠𝑔𝑡
−/+𝑎𝐹𝑅𝑅

− 𝑑𝑟𝑧
−/+

, 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 (E.6) 

     𝑛𝑟−/+ 𝑧𝑡 = ∑ 𝑓𝑟𝑛𝑡
−/+

𝑛∈𝐶𝐵:𝐹𝑍𝑛=𝑧

− ∑ 𝑓𝑟𝑛𝑡
−/+

𝑛∈𝐶𝐵:𝑇𝑍𝑛=𝑧

, 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 (E.7) 
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𝑓𝑟𝑧𝑡 =  𝑚𝑎𝑥( 𝑓𝑟𝑧𝑡
− , 𝑓𝑟𝑧𝑡

+), 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 (E.8) 
 

∑ 𝑠𝑔𝑡
−/+𝑎𝐹𝑅𝑅

𝑔∈𝐺(𝑧)

≥  𝑅𝑧
−/+𝑎𝐹𝑅𝑅

, 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 

 

(E.9) 

𝑠𝑔𝑡
−/+𝑚𝐹𝑅𝑅

≤ min(𝑃𝑔
+, 𝐷𝑇𝑧

−/+𝑚𝐹𝑅𝑅
𝑅𝑔

−/+
) , 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇15 (E.10) 

𝑠𝑔𝑡
−/+𝑎𝐹𝑅𝑅

≤ min(𝑃𝑔
+, 𝐷𝑇𝑧

−/+𝑎𝐹𝑅𝑅
𝑅𝑔

−/+
) , 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇15 (E.11) 

𝑝𝑔𝑡 + 𝑠𝑔𝑡
+𝑎𝐹𝑅𝑅 ≤ 𝑃𝑔

+𝑤𝑔𝑡, 𝑔 ∈ 𝐺𝑓𝑎𝑠𝑡, 𝑡 ∈ 𝑇15 (E.12) 

𝑝𝑔𝑡 + 𝑠𝑔𝑡
+𝑚𝐹𝑅𝑅 + 𝑠𝑔𝑡

+𝑎𝐹𝑅𝑅 ≤ 𝑃𝑔
+, 𝑔 ∈ 𝐺𝑓𝑎𝑠𝑡 , 𝑡 ∈ 𝑇15 (E.13) 

𝑝𝑔𝑡 + 𝑠𝑔𝑡
+𝑚𝐹𝑅𝑅 + 𝑠𝑔𝑡

+𝑎𝐹𝑅𝑅 ≤ 𝑃𝑔
+𝑤𝑔𝑡, 𝑔 ∈ 𝐺𝑠𝑙𝑜𝑤, 𝑡 ∈ 𝑇15 (E.14) 

𝑝𝑔𝑡 − 𝑠𝑔𝑡
−𝑚𝐹𝑅𝑅 − 𝑠𝑔𝑡

−𝑎𝐹𝑅𝑅 ≥ 𝑃𝑔
−𝑤𝑔𝑡, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇15 (E.15) 

𝑝𝑔𝑡 − 𝑝𝑔𝑡−1 + 𝑠𝑔𝑡
+𝑚𝐹𝑅𝑅 + 𝑠𝑔𝑡

+𝑎𝐹𝑅𝑅 ≤ 15 𝑅𝑔
+, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇15 (E.16) 

𝑝𝑔𝑡−1 − 𝑝𝑔𝑡 + 𝑠𝑔𝑡
−𝑚𝐹𝑅𝑅 + 𝑠𝑔𝑡

−𝑎𝐹𝑅𝑅 ≥ 15 𝑅𝑔
−, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇15 (E.17) 

∑ 𝑧𝑔𝑞 ≤ 𝑤𝑔𝑡

𝑡

𝑞=𝑡−𝑈𝑇𝑔+1

, 𝑔 ∈ 𝐺, 𝑡 ≥ 𝑈𝑇𝑔 
(E.18) 

∑ 𝑧𝑔𝑞 ≤ 1 − 𝑤𝑔𝑡

𝑡+𝐷𝑡𝑔

𝑞=𝑡+1

, 𝑔 ∈ 𝐺, 𝑡 ≤ 𝑁 − 𝐷𝑇𝑔 

(E.19) 

𝑧𝑔𝑡 ≤ 1, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇60 (E.20) 

𝑧𝑔𝑡 ≥ 𝑤𝑔𝑡 − 𝑤𝑔𝑡−1, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇60 (E.21) 

𝑣𝑧𝑡
𝑅 = 𝑣𝑧𝑡−1

𝑅 −  𝑝𝑧𝑡
𝑅 , 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 

 
(E.22) 

𝑣𝑧𝑡
𝑃𝑆 = 𝑣𝑧𝑡−1

𝑃𝑆 + 𝜇 𝑑𝑧𝑡−1 − 𝑝𝑧𝑡
𝑃𝑆, 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 

 
(E.23) 

𝑝𝑧𝑡
𝑅/𝑃𝑆

− 𝑝𝑧𝑡−1
𝑅/𝑃𝑆

+ 𝑠𝑧𝑡
+𝑚𝐹𝑅𝑅,   𝑅/𝑃𝑆

+ 𝑠𝑧𝑡
+𝑎𝐹𝑅𝑅,   𝑅/𝑃𝑆

≤ 15 𝑅𝑅/𝑃𝑆
+ , 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 

 

(E.24) 

𝑝𝑧𝑡−1
𝑅/𝑃𝑆

− 𝑝𝑧𝑡
𝑅/𝑃𝑆

+ 𝑠𝑧𝑡
−𝑚𝐹𝑅𝑅,   𝑅/𝑃𝑆

+ 𝑠𝑧𝑡
−𝑎𝐹𝑅𝑅,   𝑅/𝑃𝑆

> 15 𝑅𝑅/𝑃𝑆
− , 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 

 

(E.25) 

𝑑𝑠𝑧𝑡 − 𝑑𝑠𝑧𝑡−1 + 𝑠𝑧𝑡
−𝑚𝐹𝑅𝑅,   𝑅/𝑃𝑆

+ 𝑠𝑧𝑡
−𝑎𝐹𝑅𝑅,   𝑅/𝑃𝑆

≤ 15 𝑅𝑅/𝑃𝑆
+ , 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 

 

(E.26) 

𝑑𝑠𝑧𝑡−1 − 𝑑𝑠𝑧𝑡 + 𝑠𝑧𝑡
+𝑚𝐹𝑅𝑅,   𝑅/𝑃𝑆

+ 𝑠𝑧𝑡
+𝑎𝐹𝑅𝑅,   𝑅/𝑃𝑆

≥ 15 𝑅𝑅/𝑃𝑆
− , 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 (E.27) 
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𝑝𝑔𝑡, 𝑝𝑧𝑡

𝑅/𝑃𝑆
, 𝑣𝑧𝑡

𝑅/𝑃𝑆
, 𝑑𝑠𝑧𝑡, 𝑧𝑔𝑡, 𝑠𝑔𝑡 , 𝑙𝑠𝑡 ≥ 0, 𝑤𝑔𝑡 ∈ {0,1} (E.28) 

 

Eq. (E.1) describes the objective function of the co-optimisation model. This cost function 

consists of the production cost of units, the cost for not serving demand14, no-load cost15 and 

start-up costs. The net injection of energy is defined in constraint (E.2). Constraints (E.3) 

model the flow-based polytope as well as the deterministic requirement of section D4. Note 

that, in the second term of the flow constraint (E.3), we model the effect of the trade of 

balancing capacity on occupying cross-zonal capacity. Constraint (E.4) corresponds to energy 

balance, which is expressed as the fact that the total net injection of energy throughout the 

network balances out. Constraint (E.5) describes the demand for frequency restoration 

reserve as the sum of an inelastic requirement for aFRR and an inelastic requirement for 

mFRR. Constraint (E.6) defines a variable which quantifies the net injection of balancing 

capacity at each market area. This variable is needed for the formulation of the deterministic 

requirement for trading balancing capacity. Constraint (E.7) links the injection of balancing 

capacity to the flow of balancing capacity over the network, which is needed for expressing 

the deterministic requirement of section D4. Constraint (E.8) imposes that the flow in the 

line should be allocated as the maximum between upward and downward (as to avoid netting 

the quantities). The market clearing constraint for the aFRR market is modelled through 

constraint (E.9). Constraints (E.10) and (E.11) model the effect of ramp rate on the ability of 

units to deliver balancing capacity. Constraints (E.12)-(E.15) model the technical generation 

capabilities of the units. Here, we assume that fast generators can offer mFRR even if they are 

offline. This is achieved by constraint (E.13). Instead, constraint (E.12) enforces that offering 

aFRR requires that fast units should be committed. Constraint (E.14) enforces the maximum 

generation capacity limit for slow units and constraint (E.15) imposes the minimum 

generation limits for all generators. Constraints (E.16)-(E.17) model the ramp up/down 

capabilities. Constraints (E.18)-(E.21) model the start-up and minimum up/down times of 

the generators. These constraints correspond to the convex hull of minimum up/down time 

polytopes in the absence of ramp constraints (Rajan & Takriti, 2005), and therefore enable 

the mixed integer programming solvers that are used in our work to converge more quickly 

since they tend to produce tighter bounds in the linear programming relaxation of the unit 

commitment problem. Finally, constraints (E.22)-(E.27) model the reservoirs and pumped 

 
14 Following (Papavasiliou & Smeers, Remuneration of Flexibility using Operating Reserve Demand Curves: A 
Case Study of Belgium, 2017), VOLL is assumed to be equal to 3000 €/MWh for all bidding zones. 
15 No-load cost is a cost that is incurred at every period that a unit is online that is not related to the fuel cost 
for producing at the technical minimum of a unit. The cost that a unit incurs for operating at its technical 
minimum is accounted for separately in our model through constraints (E.15) and the first term of the objective 
function. 
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storage. Constraints (E.22)-(E.23) model the reservoirs and the energy balance of the 

storage, while constraints (E.24)-(E.27) model the ramp-up and down capabilities.  

We compute day-ahead energy prices through integer programming pricing (O'Neill, 

Sotkiewicz, Hobbs, Rothkopf, & Stewart, 2005). Concretely, the co-optimisation model (E.1)-

(E.21) is solved, and the optimal solution for the commitment variables 𝑤𝑔𝑡 and  𝑧𝑔𝑡 is 

retrieved. The binary variables are then fixed, and the model is re-run in order for prices to 

be computed. The day-ahead energy prices are then calculated as the dual multiplier of 

constraint (E.2) in this pricing re-run. 

E2 Status quo 

We now proceed to describe the status quo design. The first step in this design is to clear a 

market that trades balancing capacity. We model this balancing capacity market as follows: 

min
1

4
∑ ∑ 𝑂𝐶𝑔𝑡(𝑠𝑔𝑡

+𝑚𝐹𝑅𝑅 + 𝑠𝑔𝑡
+𝑎𝐹𝑅𝑅)

𝑔∈𝐺𝑡∈𝑇15

+ ∑ ∑ ( 𝐶𝑔(𝑃𝑔
−+𝑠𝑔𝑡

−𝑚𝐹𝑅𝑅 + 𝑠𝑔𝑡
−𝑎𝐹𝑅𝑅) 𝑤𝑔𝑡 +  𝐾𝑔 𝑤𝑔𝑡 + 𝑆𝑔𝑧𝑔𝑡)

𝑔∈𝐺 𝑡∈𝑇60

 

(E.29) 

𝑠𝑔𝑡
−/+𝑚𝐹𝑅𝑅

≤ min(𝑃𝑔
+, 𝐷𝑇𝑧

𝑚𝐹𝑅𝑅𝑅𝑔
−/+

) , 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇15 (E.30) 

𝑠𝑔𝑡
−/+𝑎𝐹𝑅𝑅

≤ min(𝑃𝑔
+, 𝐷𝑇𝑧

𝑎𝐹𝑅𝑅𝑅𝑔
−/+

) , 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇15 (E.31) 

∑ 𝑠𝑔𝑡
−/+𝑎𝐹𝑅𝑅

𝑔∈𝐺(𝑧)

≥  𝑅𝑧
−/+𝑎𝐹𝑅𝑅

, 𝑧 ∈ 𝑍 (E.32) 

∑ 𝑠𝑔𝑡
−/+𝑎𝐹𝑅𝑅

+ 𝑠𝑔𝑡
−/+𝑚𝐹𝑅𝑅

 

𝑔∈𝐺(𝑧)

≥  𝑅𝑧
−/+𝑎𝐹𝑅𝑅

+ 𝑅𝑧
−/+𝑚𝐹𝑅𝑅

, 𝑧 ∈ 𝑍 (E.33) 

𝑃𝑔
−𝑤𝑔𝑡 + 𝑠𝑔𝑡

+𝑎𝐹𝑅𝑅 ≤ 𝑃𝑔
+𝑤𝑔𝑡, 𝑔 ∈ 𝐺𝑓𝑎𝑠𝑡 , 𝑡 ∈ 𝑇15 (E.34) 

𝑃𝑔
− + 𝑠𝑔𝑡

+𝑚𝐹𝑅𝑅 + 𝑠𝑔𝑡
+𝑎𝐹𝑅𝑅 ≤ 𝑃𝑔

+, 𝑔 ∈ 𝐺𝑓𝑎𝑠𝑡, 𝑡 ∈ 𝑇15 (E.35) 

𝑃𝑔
−𝑤𝑔𝑡 + 𝑠𝑔𝑡

+𝑚𝐹𝑅𝑅 + 𝑠𝑔𝑡
+𝑎𝐹𝑅𝑅 ≤ 𝑃𝑔

+𝑤𝑔𝑡, 𝑔 ∈ 𝐺𝑠𝑙𝑜𝑤, 𝑡 ∈ 𝑇15 (E.36) 

𝑠𝑔𝑡
−/+𝑚𝐹𝑅𝑅

+ 𝑠𝑔𝑡
−/+𝑎𝐹𝑅𝑅

≤ 15 𝑅𝑔
−/+

, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇15 (E.37) 

∑ 𝑧𝑔𝑞 ≤ 𝑤𝑔𝑡

𝑡

𝑞=𝑡−𝑈𝑇𝑔+1

 
(E.38) 
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∑ 𝑧𝑔𝑞 ≤ 1 − 𝑤𝑔𝑡

𝑡+𝐷𝑡𝑔

𝑞=𝑡+1

, 𝑔 ∈ 𝐺, 𝑡 ≤ 𝑁 − 𝐷𝑇𝑔 

(E.39) 

𝑧𝑔𝑡 ≤ 1, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇60 (E.40) 

𝑧𝑔𝑡 ≥ 𝑤𝑔𝑡 − 𝑤𝑔𝑡−1, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇60 (E.41) 

 

𝑝𝑧𝑡
𝑅/𝑃𝑆̂

− 𝑝𝑧𝑡−1
𝑅/𝑃𝑆̂

+ 𝑠𝑧𝑡
+𝑚𝐹𝑅𝑅,   𝑅/𝑃𝑆

+ 𝑠𝑧𝑡
+𝑎𝐹𝑅𝑅,   𝑅/𝑃𝑆

≤ 15 𝑅𝑅/𝑃𝑆
+ , 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 

 

(E.42) 

𝑝𝑧𝑡−1
𝑅/𝑃𝑆̂

− 𝑝𝑧𝑡
𝑅/𝑃𝑆̂

+ 𝑠𝑧𝑡
−𝑚𝐹𝑅𝑅,   𝑅/𝑃𝑆

+ 𝑠𝑧𝑡
−𝑎𝐹𝑅𝑅,   𝑅/𝑃𝑆

> 15 𝑅𝑅/𝑃𝑆
− , 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 

 

(E.43) 

𝑑𝑠𝑧𝑡
̂ − 𝑑𝑠𝑧𝑡−1

̂ + 𝑠𝑧𝑡
−𝑚𝐹𝑅𝑅,   𝑅/𝑃𝑆

+ 𝑠𝑧𝑡
−𝑎𝐹𝑅𝑅,   𝑅/𝑃𝑆

≤ 15 𝑅𝑅/𝑃𝑆
+ , 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 

 

(E.44) 

𝑑𝑠𝑧𝑡−1
̂ − 𝑑𝑠𝑧𝑡

̂ + 𝑠𝑧𝑡
+𝑚𝐹𝑅𝑅,   𝑅/𝑃𝑆

+ 𝑠𝑧𝑡
+𝑎𝐹𝑅𝑅,   𝑅/𝑃𝑆

≥ 15 𝑅𝑅/𝑃𝑆
− , 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 

 

(E.45) 

𝑧𝑔𝑡, 𝑠𝑔𝑡 ≥ 0, 𝑤𝑔𝑡 ∈ {0,1} (E.46) 

 

The objective function, described in equation (E.29), is composed of the opportunity cost of 

booking balancing capacity in the balancing capacity market, plus certain fixed costs related 

to the commitment of a generator. These fixed costs include the cost that a unit incurs for 

operating at its technical minimum  𝐶𝑔(𝑃𝑔
− + 𝑠𝑔𝑡

−𝑚𝐹𝑅𝑅 + 𝑠𝑔𝑡
−𝑎𝐹𝑅𝑅) 𝑤𝑔𝑡 (note that the downward 

reserve implies a higher minimal production), no-load cost  𝐾𝑔 𝑤𝑔𝑡, and startup cost 𝑆𝑔𝑧𝑔𝑡. 

Constraints (E.30)-(E.31) limit the amount of balancing capacity that can be made available 

by a unit by taking into account the ramp specifications of the generators. Constraints (E.32)-

(E.33) define the balancing capacity requirements for both aFRR and mFRR, and capture the 

effect of one-way substitutability, whereby fast units can satisfy the needs of all balancing 

capacity products, whereas slow units can only cover mFRR needs. Constraints (E.34)-(E.41) 

relate to technical capabilities of the units. Equations (E.34)-(E.37) constrain the amount of 

balancing capacity that can be provided by taking into account the min/max generation 

capabilities of the generators. Furthermore, these equations encode the assumption that fast 

generators can offer mFRR even if they are offline. Constraints (E.38)-(E.41) model the start-

up, and min up/down times of the generators. The balancing capacity provided by hydro is 

modelled with constraints (E.42)-(E.45). The balancing capacity module cannot optimise the 

hydro production profiles, thus the production/demand profiles 𝑝𝑧𝑡−1
𝑅/𝑃𝑆

, 𝑝𝑧𝑡−1
𝑅/𝑃𝑆

 are fixed to 

historical values. 
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Note that this is an optimistic model of sequential market clearing, because it is unit-based, 

and it is richer than the bidding language that is available in existing European balancing 

capacity markets. Specifically, existing balancing capacity markets do not account for min 

up/down time constraints or fixed commitment costs of individual units, and it is rather up 

to the portfolio owners to translate these physical constraints and costs to bidding products 

that balancing markets accept. On the other hand, portfolio owners in certain markets can 

trade their positions or disaggregate market outcomes into nominations of individual 

physical units, which can rationalise our optimistic modelling of the balancing capacity 

market to a certain extent. Another reason why the model is optimistic is because it considers 

the co-optimised trading of aFRR and mFRR, whereas the trading of these two interacting 

balancing capacity products is typically decoupled in existing designs and will likely continue 

to be decoupled in the actual implementation of the market-based approach, thereby 

introducing further inefficiencies. 

The energy market clearing model trades energy while fixing the allocation of balancing 

capacity to the solution that is obtained in the balancing capacity market model. Following a 

similar description as in the co-optimisation model, the mathematical model is described as 

follows. 

min
1

4
( ∑ ∑ 𝑀𝐶𝑔𝑝𝑔𝑡 + 𝑉𝑂𝐿𝐿 𝑙𝑠𝑡) +

𝑔∈𝐺

∑ ∑ (𝐾𝑔 𝑤𝑔𝑡 + 𝑆𝑔𝑧𝑔𝑡)

𝑔∈𝐺 𝑡∈𝑇60𝑡∈𝑇15

 
(E.47) 

∑ 𝑝𝑔𝑡 +  𝑝𝑧𝑡
𝑅 + 𝑝𝑧𝑡

𝑃𝑆 + ∑ 𝑃𝑅𝑔𝑡

𝑔∈𝐺𝑅(𝑧)

+ 𝑙𝑠𝑡𝑧 − 𝑟𝑧𝑡 = 𝐷𝑡𝑧 , 𝑡 ∈ 𝑇15, 𝑧 ∈ 𝑍 

𝑔∈𝐺(𝑧)  

 (E.48) 

∑ 𝑃𝑇𝐷𝐹𝑛𝑧 𝑟𝑧𝑡 ≤ 𝑅𝐴𝑀𝑛, 𝑡 ∈ 𝑇15,  𝑛 ∈ 𝐶𝐵 

𝑧∈𝑍 

 (E.49) 

∑ 𝑟𝑧𝑡 = 0, 𝑡 ∈ 𝑇15 

𝑧∈𝑍 

 (E.50) 

𝑝𝑔𝑡 + 𝑠̅𝑔𝑡
𝑎𝐹𝑅𝑅 ≤ 𝑃𝑔

+𝑤𝑔𝑡, 𝑔 ∈ 𝐺𝑓𝑎𝑠𝑡, 𝑡 ∈ 𝑇15 (E.51) 

𝑝𝑔𝑡 + 𝑠̅𝑔𝑡
𝑚𝐹𝑅𝑅+𝑠̅𝑔𝑡

𝑎𝐹𝑅𝑅 ≤ 𝑃𝑔
+, 𝑔 ∈ 𝐺𝑓𝑎𝑠𝑡 , 𝑡 ∈ 𝑇15 (E.52) 

𝑝𝑔𝑡 + 𝑠̅𝑔𝑡
𝑚𝐹𝑅𝑅+𝑠̅𝑔𝑡

𝑎𝐹𝑅𝑅 ≤ 𝑃𝑔
+𝑤𝑔𝑡, 𝑔 ∈ 𝐺𝑠𝑙𝑜𝑤, 𝑡 ∈ 𝑇15 (E.53) 

𝑝𝑔𝑡 ≥ 𝑃𝑔
−𝑤𝑔𝑡, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇15 (E.54) 

𝑝𝑔𝑡 − 𝑝𝑔𝑡−1 + 𝑠̅𝑔𝑡
𝑚𝐹𝑅𝑅+𝑠̅𝑔𝑡

𝑎𝐹𝑅𝑅 ≤ 15 𝑅𝑔
+, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇15 (E.55) 

𝑝𝑔𝑡−1 − 𝑝𝑔𝑡 ≥ 15 𝑅𝑔
−, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇15 (E.56) 
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∑ 𝑧𝑔𝑞 ≤ 𝑤𝑔𝑡

𝑡

𝑞=𝑡−𝑈𝑇𝑔+1

, 𝑔 ∈ 𝐺, 𝑡 ≥ 𝑈𝑇𝑔 
(E.57) 

∑ 𝑧𝑔𝑞 ≤ 1 − 𝑤𝑔𝑡

𝑡+𝐷𝑡𝑔

𝑞=𝑡+1

, 𝑔 ∈ 𝐺, 𝑡 ≤ 𝑁 − 𝐷𝑇𝑔 

(E.58) 

𝑧𝑔𝑡 ≤ 1, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇60 (E.59) 

𝑧𝑔𝑡 ≥ 𝑤𝑔𝑡 − 𝑤𝑔𝑡−1, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇60 (E.60) 

𝑣𝑧𝑡
𝑅 = 𝑣𝑧𝑡−1

𝑅 − 𝑝𝑧𝑡
𝑅 , 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 

 
(E.61) 

𝑣𝑧𝑡
𝑃𝑆 = 𝑣𝑧𝑡−1

𝑃𝑆 + 𝜇 𝑑𝑧𝑡−1 −  𝑝𝑧𝑡
𝑃𝑆, 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 

 
(E.62) 

𝑝𝑧𝑡
𝑅/𝑃𝑆

− 𝑝𝑧𝑡−1
𝑅/𝑃𝑆

+ 𝑠̅𝑧𝑡
+𝑚𝐹𝑅𝑅,   𝑅/𝑃𝑆

+ 𝑠̅𝑧𝑡
+𝑎𝐹𝑅𝑅,   𝑅/𝑃𝑆

≤ 15 𝑅𝑅/𝑃𝑆
+ , 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 

 

(E.63) 

𝑝𝑧𝑡−1
𝑅/𝑃𝑆

− 𝑝𝑧𝑡
𝑅/𝑃𝑆

+ 𝑠̅𝑧𝑡
−𝑚𝐹𝑅𝑅,   𝑅/𝑃𝑆

+ 𝑠̅𝑧𝑡
−𝑎𝐹𝑅𝑅,   𝑅/𝑃𝑆

> 15 𝑅𝑅/𝑃𝑆
− , 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 

 

(E.64) 

𝑑𝑠𝑧𝑡 − 𝑑𝑠𝑧𝑡−1 + 𝑠̅𝑧𝑡
−𝑚𝐹𝑅𝑅,   𝑅/𝑃𝑆

+ 𝑠̅𝑧𝑡
−𝑎𝐹𝑅𝑅,   𝑅/𝑃𝑆

≤ 15 𝑅𝑅/𝑃𝑆
+ , 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 

 

(E.65) 

𝑑𝑠𝑧𝑡−1 − 𝑑𝑠𝑧𝑡 + 𝑠̅𝑧𝑡
+𝑚𝐹𝑅𝑅,   𝑅/𝑃𝑆

+ 𝑠̅𝑧𝑡
+𝑎𝐹𝑅𝑅,   𝑅/𝑃𝑆

≥ 15 𝑅𝑅/𝑃𝑆
− , 𝑧 ∈ 𝑍, 𝑡 ∈ 𝑇15 (E.66) 

 
𝑝𝑔𝑡, 𝑧𝑔𝑡, 𝑙𝑠𝑡 ≥ 0, 𝑤𝑔𝑡 ∈ {0,1} (E.67) 

 

Model (E.47)-(E.67) follows a similar structure to that of the co-optimisation model, with the 

difference that the balancing capacity variables (𝑠̅𝑔𝑡
−/+𝑚𝐹𝑅𝑅

 and 𝑠̅𝑔𝑡
−/+𝑎𝐹𝑅𝑅

) are fixed to the 

solution of the balancing capacity market model. Furthermore, note that the flow-based 

polytope described by constraint (E.49) does not consider the trade of balancing capacity. 

 

E3 Market based allocation 

The market-based model follows the same structure as that of the status quo model of section 

E2. In this section we limit ourselves to describing the differences between the two models. 

Firstly, in the balancing capacity market model of the market-based approach we allow the 

day-ahead exchange of balancing capacity between bidding zones and for this reason we 

introduce the deterministic requirement of section D4. Moreover, following Article 41(2) of 

the European Balancing Guideline (European Commission, 2017), we introduce a 10% limit 
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on the amount of cross-zonal capacity that can be allocated for the exchange of balancing 

capacity between cross-border lines. 

Additionally, in the day-ahead energy market model, the deterministic requirement appears 

in the flow-based constraints, where the amount of balancing capacity that is traded is fixed 

to the solution of the day-ahead balancing capacity market. This encodes the fact that day-

ahead cross-zonal network capacity that is allocated for the exchange of balancing capacity 

cannot be double-booked for the exchange of day-ahead energy. 

 

E4 Balancing market 

As we describe in section D1, the day-ahead model is complemented by a real-time balancing 

energy module. Within this module, we follow the mathematical description of the co-

optimisation model (E.1)-(E.28), with a few modifications that we describe below. 

There are no balancing capacity requirements, thus equations (E.5)-(E.9) are not considered. 

Furthermore, the variables 𝑠𝑔𝑡
𝑚𝐹𝑅𝑅/𝑎𝐹𝑅𝑅

 are set to zero in the balancing energy model. 

The flow-based polytope described by constraint (E.3) does not include trade of reserve, 

since cross-zonal capacity is already allocated in the day-ahead market, thus it is replaced by: 

∑ 𝑃𝑇𝐷𝐹𝑛𝑧 𝑟𝑧𝑡 ≤ 𝑅𝐴𝑀𝑛, 𝑡 ∈ 𝑇15,  𝑛 ∈ 𝐶𝐵 

𝑧∈𝑍 

 

The commitment 𝑤𝑔𝑡 of the slow generators is fixed to the day-ahead commitment. 

A stochastic parameter is introduced in the energy balance constraint (E.2), which 

corresponds to a variety of real-time renewable production profiles: 

∑ 𝑝𝑔𝑡 + 𝑝𝑧𝑡
𝑅 + 𝑝𝑧𝑡

𝑃𝑆 − 𝑑𝑠𝑧𝑡 + ∑ 𝑃𝑅𝑔𝑡(𝜔)

𝑔∈𝐺𝑅(𝑧)

+ 𝑙𝑠𝑡𝑧 − 𝑟𝑧𝑡 = 𝐷𝑡𝑧     (𝜆𝑡𝑧), 𝑡 ∈ 𝑇15, 𝑧 ∈ 𝑍 

𝑔∈𝐺(𝑧) 

 

The real-time module is run repeatedly using a different realisation of the uncertain 

parameters based on the state of the world 𝜔 at each sample. The results of the balancing 

energy market model are those that are used for quantifying the efficiency of the different 

designs, since it represents the actual physical operation of the system. 

 

Appendix F: Technical details on case study 
We analyse the Core region of Europe in our study. In this section we describe how the data 

is assembled, and we discuss some characteristics of the system. 



47 
 

 

F1 Generator data 

The technical characteristics of different technologies (min up and down times, ramp rates, 

technical minima and maxima, startup costs, min load costs, and heat rate curves) are based 

on an industrial database of thermal generators, which has been provided to our group by 

industrial partners. The installed capacity for each technology is presented in Table 2. The 

installed capacity and number of units per technology and per country is based on the 

ENTSO-E transparency platform. 

 

 Fast (MW) Slow (MW) Non-

dispatchable 

(MW) 

Total (MW) Marginal cost Fixed cost 

Biomass 10892 1142 0 12034 Medium Medium 

Gas 75747 11981 0 87728 High Medium 

Hard coal 0 46511 0 46511 High High 

Waste 729 845 0 1574 Medium Low 

Nuclear 0 0 82087 82087 Low High 

Brown 

coal/lignite 

0 38281 0 38281 High High 

Oil 5934 752 0 6685 High Medium 

Coal-derived 

gas 

2331 0 0 2331 High Medium 

Hydraulic 

pumped 

storage 

22960 0 0 22960 N/A N/A 

Wind 0 0 119084 119084 Low Low 

Hydraulic run 

of river 

0  0 27246 27246 N/A N/A 

Hydraulic 

reservoir 

19273 0 0 19273 N/A N/A 

Solar 0 0 128553 128553 Low Low 

Table 2: Total capacity of each technology and part of each technology that is classified as fast or slow. 

The capacity of thermal generators within Germany, France and Belgium was reduced in 

order to account for scheduled maintenance and large outages. A different outage derating 

factor was computed for each generator and each season. These are computed based on 

outage duration and frequency information for each generator. 
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Table 2 presents the technologies and their classification between fast, slow and other. 

Technologies that are neither fast nor slow are non-dispatchable, in the sense that their 

dispatch is fixed to the result of the day-ahead market model. Table 3 presents the breakdown 

of each technology per bidding zone. 

 

 AT BE HR CZ FR DE/LU HU NL PL RO SI SK Total 

Biomass 766 725 56 365 1300 7179 231 632 659 121 0 0 12034 

Gas 4194 6846 822 1247 11628 31776 3715 18200 3870 2031 769 2630.0 87728 

Hard coal 0 0 217 1267 1760 17942 42 4061 21052 169 0 0 46511 

Waste 109 106 0 94 0 556 39 642 0 0 29 0 1574 

Nuclear 0 5936 0 3936 60782 4121 1916 479 0 1300 696 2921 82087 

Brown 

coal/lignite 

0 0 0 7177 0 17598 1164 0 8299 2545 1278 220 38281 

Oil 355 228 43 0 2475 2699 432 0 404 0 48 0 6685 

Coal-

derived gas 

0 305 0 375 422 957 0 0 272 0 0 0 2331 

Hydraulic 

pumped 

storage 

3363 1308 281 1172 5051 9280 0 0 1591 0.0 180 734 22960 

Wind 3569 5315 981 339 21336 65871 323 9410 8978 2957 2 3 119084 

Hydraulic 

run of river 

5902 186 428 340 11695 3737 33 0 323 2780 1102 720 27246 

Hydraulic 

reservoir 

2771 0.0 1446 772 8787 1444 28 0 469 3356 0.0 200 19273 

Solar 3265 6475 140 2083 14639 63366 3300 22590 10643 1185 294 573 128553 

Total 24295 27244 4414 19167 139875 226526 11223 56051 56560 16444 4398 8001.4 594.347 

Table 3: Installed capacity per Member State. All values are in MW. 

 

F2 Day types 

Certain input data (such as demand, renewable supply data, and hydrology) are time-varying 

in our analysis. Thus, we describe a typical year of operation by considering eight 

representative days. The day types distinguish between weekends (WE) and weekdays (WD), 

as well as by season, thus leading to eight day types: spring WD/WE, summer WD/WE, 

autumn WD/WE, and winter WD/WE. We use clustering to select these representative day 

types. 
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F3 Network data 

The network model used in this paper is a flow-based model based on zonal PTDFs. To deliver 

a model that is as realistic as possible, the polytope that is considered corresponds to the 

flow-based polytope that is used in actual operations. This data is publicly available online 

through the JAO website16. To each day type we assign a flow-based polytope by randomly 

selecting a day that belongs to the day type in question and selecting the corresponding 

polytope. Table 4 specifies the exact date that has been selected for representing each day 

type. 

 

Day type Date 

Spring WD 15/02/2023 

Spring WE 20/05/2023 

Summer WD 12/06/2023 

Summer WE 30/06/2023 

Autumn WD 11/10/2023 

Autumn WE 04/11/2023 

Winter WD 11/01/2023 

Winter WE 18/02/2023 

Table 4: Source date of PTDF polytope corresponding to each day type. 

 

F4 Load and renewables 

The installed capacity for solar, wind and hydro power is collected from the ENTSO-E 

transparency platform for the year 2023. The normalised time series of renewable supply 

(which include real-time samples) are based on (Aravena & Papavasiliou, Renewable Energy 

Integration in Zonal Markets, 2017). Using this data, we are able to generate 145 profiles of 

renewable supply data. These samples are the input that is used in the real-time balancing 

market simulations. On the other hand, the day-ahead simulations are run using the average 

renewable supply data. 

 

 
16 https://publicationtool.jao.eu/core/finalComputation 

https://publicationtool.jao.eu/core/finalComputation
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F5 Reserve requirements 

Reserve requirements are sourced from diverse sources, including publicly available sources 

and communication with national regulators and TSOs. The reserve requirements are 

presented in Table 5. 

 

 aFRR up aFRR down mFRR up mFRR down 

Austria (AT) 200 200 280 195 

Belgium (BE) 117 117 920 877 

Croatia (HR) 75 75 242 130 

Czechia (CZ) 154 164 844 206 

France (FR) 728 728 1000 0 

Germany/Luxembourg 

(DE/LU) 

1800 1800 600 400 

Hungary (HU) 250 331 123 1100 

Netherlands (NL) 350 350 954 726 

Poland (PL) 627 627 1500 1300 

Romania (RO) 316 316 1400 870 

Slovakia (SK) 130 130 510 239 

Slovenia (SI) 65 60 190 20 

Table 5: Reserve requirements per bidding zone. Units are in MW. 

Appendix G: Sensitivity analyses 
This section provides additional information on the results of our analysis, including a 

barrage of sensitivity analyses that were inspired by discussions with ACER. 

Before proceeding to the discussion of the additional sensitivity analyses, we discuss some 

aspects related to the computational performance of our models. The computational times 

are as follows: (i) the day-ahead co-optimisation requires approximately 1 hour of run time 

per day type, (ii) the day-ahead sequential clearing model requires approximately half an 

hour of run time per day type, and (iii) the real-time economic dispatch model requires 

approximately two minutes of run time per sample. The runs have been carried out in ARIS 
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on the GRNET cluster in Greece, which consists of 532 computational nodes, separated into 

four node categories. The runs have been performed on the thin nodes of the cluster, which 

consists of 426 computing nodes and a total of 8520 cores. Each node consists of two Ivy 

Bridge-Intel Xeon E5-2680v2 processors, each one equipped with 10 cores. The optimisation 

software that is used for the analysis is Gurobi 10.3. 

 

G1 Internalizing opportunity costs in co-optimisation 

It is interesting to note that one desire expressed by certain market participants in the policy 

debate surrounding a transition to co-optimisation is to maintain the option of bidding 

explicit balancing capacity costs in the co-optimised multi-product auction. This makes little 

sense from the economic standpoint of expressing opportunity costs, because opportunity 

costs are already accounted for endogenously in the multi-product auction. Nevertheless, it 

is a practice that is actually encountered in certain systems, e.g. the integrated scheduling 

process of the electricity market in Greece and Cyprus. In our analysis, we represent the 

opportunity costs of balancing capacity, as computed for the sequential market designs, as 

an explicit cost in the objective function of the co-optimisation model. 

 

Figure 14: Cost increase in real-time operations when introducing explicit balancing capacity costs in the co-optimisation 
model. 

The results of this analysis are presented in Figure 14, where we record the cost increase of 

real-time operations when introducing explicit opportunity costs. Concretely, we observe a 

relative average cost increase of approximately 0.3% with respect to the co-optimisation 

setting without explicit reserve bidding. This deterioration in performance is not surprising. 

In principle, explicit balancing capacity costs in a co-optimisation model should allow 

generators to express economic costs that are related to the provision of balancing capacity 

alone, and are not variable or fixed (min load, no-load and startup) costs. No such costs exist 

in our analysis, and introducing opportunity costs explicitly in the co-optimisation model 
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means that they are accounted for twice in the day-ahead auction (once as explicitly costs in 

the objective function and then again through constraints in the market model), and thus 

lead to inefficient day-ahead commitment decisions. 

 

G2 Lifting the 10% limit in the market-based approach 

The increased trading that is allowed by the co-optimisation model is closely linked to the 

fact that the co-optimisation model is not subject to a 10% limit on the allocation of cross-

zonal capacity for the purpose of trading balancing capacity. This motivates the question of 

whether the 10% limit is driving the inefficiencies of the market-based design by inefficiently 

eliminating opportunities for trading balancing capacity. The left panel of Figure 15 actually 

establishes that lifting the 10% limit would actually backfire for the market-based approach, 

by increasing inefficiencies by 39 million € per year for the Core region. Erring on the safe 

side by not allocating too much cross-zonal capacity for the trade of balancing capacity turns 

out to be preferable to erring on the opposite side, since lifting the 10% limit is observed to 

deprive the day-ahead energy market from an excessive amount of cross-zonal transmission 

capacity. The right panel of Figure 15 depicts the net position of each bidding zone in the 

market-based approach before and after lifting the 10% limit on the allocation of cross-zonal 

capacity for the exchange of balancing capacity. 
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Figure 15: Up: daily cost increase if we lift the 10% limit on the allocation of cross-zonal capacity for the trade of balancing 
capacity in the market-based approach. Lower left [right]: net balancing capacity [energy] position of each bidding zone in 

the market-based approach before and after lifting the 10% limit on the allocation of cross-zonal capacity for the exchange of 
balancing capacity. 

 

G3 Welfare benefits of Austrian-German aFRR cooperation 

The Austrian-German aFRR cooperation initiative has been put in place in February 2020, 

and has allowed the German and Austrian TSOs to share 80 MW of aFRR on the DE-AT border, 

in both directions. The savings that have been estimated by ENTSO-E17 from this sharing 

amount to 17 million € per year. The estimate of the savings based on our real-time model is 

22 million € per year, as indicated in Figure 16. Although the methodologies used for these 

estimations are different, the savings seem to be in the same range. Note that our model 

accounts for both aFRR and mFRR, whereas ENTSO-E focuses on aFRR only and estimates 

are based on the effect of the measure on the day-ahead market. 

 

 

Figure 16: Cost savings (in € per year) of the Austrian-German aFRR cooperation initiative as estimated by our model. 

 

G4 Sensitivity on the nuclear power availability of France 

One of the drivers of efficiency gains within the co-optimisation design is the higher usage of 

nuclear power, particularly in France, as compared to the sequential designs (see the welfare 

analysis, subsection 4.2). In this section we consider a sensitivity analysis where French 

nuclear power capacity is reduced to levels that correspond to the historically documented 

amount of nuclear power production in 2023, which was significantly lower than the nominal 

 
17 https://ee-public-nc-downloads.azureedge.net/strapi-test-assets/strapi-
assets/2022_ENTSO_E_Balancing_Report_Web_2bddb9ad4f.pdf, section 3.2.2.2. 

https://ee-public-nc-downloads.azureedge.net/strapi-test-assets/strapi-assets/2022_ENTSO_E_Balancing_Report_Web_2bddb9ad4f.pdf
https://ee-public-nc-downloads.azureedge.net/strapi-test-assets/strapi-assets/2022_ENTSO_E_Balancing_Report_Web_2bddb9ad4f.pdf
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capacity of nuclear technology in our model. The welfare gains of this sensitivity analysis are 

presented in Figure 17. We observe that, although there is a reduction in welfare benefits, it 

is rather low. In fact, the welfare reduction represents 0.3% of the efficiency gains of co-

optimisation in the base case scenario.  

 
Figure 17: Welfare comparison of alternative designs in the case of outage in French nuclear power plants, corresponding to 

historical conditions in 2023. The figure presents the relative cost comparison of the co-optimisation and market-based 
approach relative to status-quo. 
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